

ELF-64 Object File Format

Version 1.5 Draft 2

May 27, 1998

This document describes the current HP/Intel definition of the ELF-64 object
file format. It is, for the most part, a simple extension of the ELF-32 format as
defined originally by AT&T, although some fields have been rearranged to keep
all fields naturally aligned without any internal padding in the structures.

Additional detail about the ELF-32 format may be obtained from any of the
following sources:

• Unix System V Release 4 Programmer’s Guide: ANSI C and

Programming Support Tools

• System V Application Binary Interface, Revised Edition

• System V Interface Definition, Third Edition

• Tool Interface Standards: Portable Formats Specification, Version 1.0

The processor-specific details of the ELF formats are covered in separate
supplements. As much as possible, processor-specific definitions apply equally
to ELF-32 and ELF-64.

Many implementations of ELF also include symbolic debug information in the
DWARF format. We regard the choice of debug format as a separate issue, and
do not include debug information in this specification.

1. Overview of an ELF file

An ELF object file consists of the following parts:

• File header, which must appear at the beginning of the file.

• Section table, required for relocatable files, and optional for loadable files.

• Program header table, required for loadable files, and optional for
relocatable files. This table describes the loadable segments and other
data structures required for loading a program or dynamically-linked
library in preparation for execution.

• Contents of the sections or segments, including loadable data, relocations,
and string and symbol tables.

Relocatable and loadable object files are illustrated in Figure 1. The contents
of these parts are described in the following sections.

 Figure 1. Structure of an ELF File

2. Data representation

The data structures described in this document are described in a machine-
independent format, using symbolic data types shown in the Table 1. For 64-bit
processors, these data types have the sizes and alignments shown.

The data structures are arranged so that fields are aligned on their natural
boundaries and the size of each structure is a multiple of the largest field in the
structure without padding.

ELF Header

Section header table

Section 1

Section 2

. . .

Section n

Program header table
(optional)

ELF Header

Program header table

Segment 1

Segment 2

. . .

Section header table
(optional)

Relocatable File Loadable File

Table 1. ELF-64 Data Types

Name Size Alignment Purpose

Elf64_Addr 8 8 Unsigned program address

Elf64_Off 8 8 Unsigned file offset

Elf64_Half 2 2 Unsigned medium integer

Elf64_Word 4 4 Unsigned integer

Elf64_Sword 4 4 Signed integer

Elf64_Xword 8 8 Unsigned long integer

Elf64_Sxword 8 8 Signed long integer

unsigned char 1 1 Unsigned small integer
2 ELF-64 Object File Format, Version 1.5 Draft 2

3. File header

The file header is located at the beginning of the file, and is used to locate the
other parts of the file. The structure is shown in Figure 2.

The fields in the ELF header have the following meanings:

• e_ident identify the file as an ELF object file, and provide information
about the data representation of the object file structures. The bytes of this
array that have defined meanings are detailed below. The remaining bytes
are reserved for future use, and should be set to zero. Each byte of the
array is indexed symbolically using the names in the Table 2.

• e_ident[EI_MAG0] through e_ident[EI_MAG3] contain a “magic number,”
identifying the file as an ELF object file. They contain the characters ‘\x7f’,
‘E’, ‘L’, and ‘F’, respectively.

typedef struct
{

unsigned char e_ident[16]; /* ELF identification */
Elf64_Half e_type; /* Object file type */
Elf64_Half e_machine; /* Machine type */
Elf64_Word e_version; /* Object file version */
Elf64_Addr e_entry; /* Entry point address */
Elf64_Off e_phoff; /* Program header offset */
Elf64_Off e_shoff; /* Section header offset */
Elf64_Word e_flags; /* Processor-specific flags */
Elf64_Half e_ehsize; /* ELF header size */
Elf64_Half e_phentsize; /* Size of program header entry */
Elf64_Half e_phnum; /* Number of program header entries */
Elf64_Half e_shentsize; /* Size of section header entry */
Elf64_Half e_shnum; /* Number of section header entries */
Elf64_Half e_shstrndx; /* Section name string table index */

} Elf64_Ehdr;

 Figure 2. ELF-64 Header

Table 2. ELF Identification, e_ident

Name Value Purpose

EI_MAG0 0 File identification

EI_MAG1 1

EI_MAG2 2

EI_MAG3 3

EI_CLASS 4 File class

EI_DATA 5 Data encoding

EI_VERSION 6 File version

EI_OSABI 7 OS/ABI identification

EI_ABIVERSION 8 ABI version

EI_PAD 9 Start of padding bytes

EI_NIDENT 16 Size of e_ident[]
 File header 3

• e_ident[EI_CLASS] identifies the class of the object file, or its capacity.
Table 3 lists the possible values.

This document describes the structures for ELFCLASS64.

The class of the ELF file is independent of the data model assumed by the
object code. The EI_CLASS field identifies the file format; a processor-
specific flag in the e_flags field, described below, may be used to identify
the application’s data model if the processory supports multiple models.

• e_ident[EI_DATA] specifies the data encoding of the object file data
structures. Table 4 lists the encodings defined for ELF-64.

For the convenience of code that examines ELF object files at run time
(e.g., the dynamic loader), it is intended that the data encoding of the
object file will match that of the running program. For environments that
support both byte orders, a processor-specific flag in the e_flags field,
described below, may be used to identify the application’s operating mode.

• e_ident[EI_VERSION] identifies the version of the object file format.
Currently, this field has the value EV_CURRENT, which is defined with the
value 1.

• e_ident[EI_OSABI] identifies the operating system and ABI for which the
object is prepared. Some fields in other ELF structures have flags and
values that have environment-specific meanings; the interpretation of
those fields is determined by the value of this field. Table 5 lists the
currently-defined values for this field.

• e_ident[EI_ABIVERSION] identifies the version of the ABI for which the object
is prepared. This field is used to distinguish among incompatible versions
of an ABI. The interpretation of this version number is dependent on the
ABI identified by the EI_OSABI field.

For applications conforming to the System V ABI, third edition, this field
should contain 0.

• e_type identifies the object file type. The processor-independent values
for this field are listed in Table 6.

• e_machine identifies the target architecture. These values are defined in
the processor-specific supplements.

• e_version identifies the version of the object file format. Currently, this
field has the value EV_CURRENT, which is defined with the value 1.

• e_entry contains the virtual address of the program entry point. If there is
no entry point, this field contains zero.

• e_phoff contains the file offset, in bytes, of the program header table.

• e_shoff contains the file offset, in bytes, of the section header table.

• e_flags contains processor-specific flags.

• e_ehsize contains the size, in bytes, of the ELF header.

• e_phentsize contains the size, in bytes, of a program header table entry.

• e_phnum contains the number of entries in the program header table.

• e_shentsize contains the size, in bytes, of a section header table entry.

• e_shnum contains the number of entries in the section header table.
4 ELF-64 Object File Format, Version 1.5 Draft 2

• e_shstrndx contains the section header table index of the section
containing the section name string table. If there is no section name string
table, this field has the value SHN_UNDEF.

4. Sections

Sections contain all the information in an ELF file, except for the ELF header,
program header table, and section header table. Sections are identified by an
index into the section header table.

Table 3. Object File Classes, e_ident[EI_CLASS]

Name Value Meaning

ELFCLASS32 1 32-bit objects

ELFCLASS64 2 64-bit objects

Table 4. Data Encodings, e_ident[EI_DATA]

Name Value Meaning

ELFDATA2LSB 1 Object file data structures are little-
endian

ELFDATA2MSB 2 Object file data structures are big-
endian

Table 5. Operating System and ABI Identifiers, e_ident[EI_OSABI]

Name Value Meaning

ELFOSABI_SYSV 0 System V ABI

ELFOSABI_HPUX 1 HP-UX operating system

ELFOSABI_STANDALONE 255 Standalone (embedded)
application

Table 6. Object File Types, e_type

Name Value Meaning

ET_NONE 0 No file type

ET_REL 1 Relocatable object file

ET_EXEC 2 Executable file

ET_DYN 3 Shared object file

ET_CORE 4 Core file

ET_LOOS 0xFE00 Environment-specific use

ET_HIOS 0xFEFF

ET_LOPROC 0xFF00 Processor-specific use

ET_HIPROC 0xFFFF
 Sections 5

Section indices

Section index 0, and indices in the range 0xFF00–0xFFFF are reserved for special
purposes. Table 7 lists the special section indices that are defined.

The first entry in the section header table (with an index of 0) is reserved, and
must contain all zeroes.

Section header entries

The structure of a section header is shown in Figure 3.

• sh_name contains the offset, in bytes, to the section name, relative to the
start of the section name string table.

• sh_type identifies the section type. Table 8 lists the processor-independent
values for this field.

• sh_flags identifies the attributes of the section. Table 9 lists the processor-
independent values for these flags.

Table 7. Special Section Indices

Name Value Meaning

SHN_UNDEF 0 Used to mark an undefined or
meaningless section reference

SHN_LOPROC 0xFF00 Processor-specific use

SHN_HIPROC 0xFF1F

SHN_LOOS 0xFF20 Environment-specific use

SHN_HIOS 0xFF3F

SHN_ABS 0xFFF1 Indicates that the corresponding
reference is an absolute value

SHN_COMMON 0xFFF2 Indicates a symbol that has been
declared as a common block
(Fortran COMMON or C tentative
declaration)

typedef struct
{

Elf64_Word sh_name; /* Section name */
Elf64_Word sh_type; /* Section type */
Elf64_Xword sh_flags; /* Section attributes */
Elf64_Addr sh_addr; /* Virtual address in memory */
Elf64_Off sh_offset; /* Offset in file */
Elf64_Xword sh_size; /* Size of section */
Elf64_Word sh_link; /* Link to other section */
Elf64_Word sh_info; /* Miscellaneous information */
Elf64_Xword sh_addralign; /* Address alignment boundary */
Elf64_Xword sh_entsize; /* Size of entries, if section has table */

} Elf64_Shdr;

 Figure 3. ELF-64 Section Header
6 ELF-64 Object File Format, Version 1.5 Draft 2

• sh_addr contains the virtual address of the beginning of the section in
memory. If the section is not allocated to the memory image of the
program, this field should be zero.

• sh_offset contains the offset, in bytes, of the beginning of the section
contents in the file.

• sh_size contains the size, in bytes, of the section. Except for SHT_NOBITS
sections, this is the amount of space occupied in the file.

• sh_link contains the section index of an associated section. This field is
used for several purposes, depending on the type of section, as explained
in Table 10.

• sh_info contains extra information about the section. This field is used for
several purposes, depending on the type of section, as explained in
Table 11.

• sh_addralign contains the required alignment of the section. This field must
be a power of two.

• sh_entsize contains the size, in bytes, of each entry, for sections that
contain fixed-size entries. Otherwise, this field contains zero.

Table 8. Section Types, sh_type

Name Value Meaning

SHT_NULL 0 Marks an unused section header

SHT_PROGBITS 1 Contains information defined by
the program

SHT_SYMTAB 2 Contains a linker symbol table

SHT_STRTAB 3 Contains a string table

SHT_RELA 4 Contains “Rela” type relocation
entries

SHT_HASH 5 Contains a symbol hash table

SHT_DYNAMIC 6 Contains dynamic linking tables

SHT_NOTE 7 Contains note information

SHT_NOBITS 8 Contains uninitialized space; does
not occupy any space in the file

SHT_REL 9 Contains “Rel” type relocation
entries

SHT_SHLIB 10 Reserved

SHT_DYNSYM 11 Contains a dynamic loader symbol
table

SHT_LOOS 0x60000000 Environment-specific use

SHT_HIOS 0x6FFFFFFF

SHT_LOPROC 0x70000000 Processor-specific use

SHT_HIPROC 0x7FFFFFFF
 Sections 7

Standard sections

The standard sections used for program code and data are shown in Table 12.
The standard sections used for other object file information are shown in
Table 13. In the flags column, “A” stands for SHF_ALLOC, “W” for SHF_WRITE, and
“X” for SHF_EXECINSTR.

Table 9. Section Attributes, sh_flags

Name Value Meaning

SHF_WRITE 0x1 Section contains writable data

SHF_ALLOC 0x2 Section is allocated in memory
image of program

SHF_EXECINSTR 0x4 Section contains executable
instructions

SHF_MASKOS 0x0F000000 Environment-specific use

SHF_MASKPROC 0xF0000000 Processor-specific use

Table 10. Use of the sh_link Field

Section Type Associated Section

SHT_DYNAMIC String table used by entries in this section

SHT_HASH Symbol table to which the hash table applies

SHT_REL
SHT_RELA

Symbol table referenced by relocations

SHT_SYMTAB
SHT_DYNSYM

String table used by entries in this section

Other SHN_UNDEF

Table 11. Use of the sh_info Field

Section Type sh_info

SHT_REL
SHT_RELA

Section index of section to which the relocations
apply

SHT_SYMTAB
SHT_DYNSYM

Index of first non-local symbol (i.e., number of local
symbols)

Other 0

Table 12. Standard Sections for Code and Data

Section Name Section Type Flags Use

.bss SHT_NOBITS A, W Uninitialized data

.data SHT_PROGBITS A, W Initialized data

.interp SHT_PROGBITS [A] Program interpreter path name

.rodata SHT_PROGBITS A Read-only data (constants and
literals)

.text SHT_PROGBITS A, X Executable code
8 ELF-64 Object File Format, Version 1.5 Draft 2

5. String tables

String table sections contain strings used for section names and symbol
names. A string table is just an array of bytes containing null-terminated
strings. Section header table entries, and symbol table entries refer to strings
in a string table with an index relative to the beginning of the string table. The
first byte in a string table is defined to be null, so that the index 0 always refers
to a null or non-existent name.

6. Symbol table

The first symbol table entry is reserved and must be all zeroes. The symbolic
constant STN_UNDEF is used to refer to this entry.

The structure of a symbol table entry is shown in Figure 4.

Table 13. Other Standard Sections

Section Name Section Type Flags Use

.comment SHT_PROGBITS none Version control information

.dynamic SHT_DYNAMIC A[, W] Dynamic linking tables

.dynstr SHT_STRTAB A String table for .dynamic section

.dynsym SHT_DYNSYM A Symbol table for dynamic linking

.got SHT_PROGBITS mach. dep. Global offset table

.hash SHT_HASH A Symbol hash table

.note SHT_NOTE none Note section

.plt SHT_PROGBITS mach. dep. Procedure linkage table

.relname

.relaname

SHT_REL
SHT_RELA

[A] Relocations for section name

.shstrtab SHT_STRTAB none Section name string table

.strtab SHT_STRTAB none String table

.symtab SHT_SYMTAB [A] Linker symbol table

typedef struct
{

Elf64_Word st_name; /* Symbol name */
unsigned char st_info; /* Type and Binding attributes */
unsigned char st_other; /* Reserved */
Elf64_Half st_shndx; /* Section table index */
Elf64_Addr st_value; /* Symbol value */
Elf64_Xword st_size; /* Size of object (e.g., common) */

} Elf64_Sym;

 Figure 4. ELF-64 Symbol Table Entry
 String tables 9

• st_name contains the offset, in bytes, to the symbol name, relative to the
start of the symbol string table. If this field contains zero, the symbol has
no name.

• st_info contains the symbol type and its binding attributes (that is, its
scope). The binding attributes are contained in the high-order four bits of
the eight-bit byte, and the symbol type is contained in the low-order four
bits. The processor-independent binding attributes are listed in Table 14,
and the processor-independent values for symbol type are listed in
Table 15.

An STT_FILE symbol must have STB_LOCAL binding, its section index must be
SHN_ABS, and it must precede all other local symbols for the file.

• st_other is reserved for future use; must be zero.

• st_shndx contains the section index of the section in which the symbol is
“defined.” For undefined symbols, this field contains SHN_UNDEF; for
absolute symbols, it contains SHN_ABS; and for common symbols, it
contains SHN_COMMON.

• st_value contains the value of the symbol. This may be an absolute value
or a relocatable address.

In relocatable files, this field contains the alignment constraint for
common symbols, and a section-relative offset for defined relocatable
symbols.

In executable and shared object files, this field contains a virtual address
for defined relocatable symbols.

• st_size contains the size associated with the symbol. If a symbol does not
have an associated size, or the size is unknown, this field contains zero.

Table 14. Symbol Bindings

Name Value Meaning

STB_LOCAL 0 Not visible outside the object file

STB_GLOBAL 1 Global symbol, visible to all object
files

STB_WEAK 2 Global scope, but with lower
precedence than global symbols

STB_LOOS 10 Environment-specific use

STB_HIOS 12

STB_LOPROC 13 Processor-specific use

STB_HIPROC 15

Table 15. Symbol Types

Name Value Meaning

STT_NOTYPE 0 No type specified (e.g., an absolute
symbol)

STT_OBJECT 1 Data object

STT_FUNC 2 Function entry point

STT_SECTION 3 Symbol is associated with a section
10 ELF-64 Object File Format, Version 1.5 Draft 2

7. Relocations

The ELF format defines two standard relocation formats, “Rel” and “Rela.” The
first form is shorter, and obtains the addend part of the relocation from the
original value of the word being relocated. The second form provides an
explicit field for a full-width addend. The structure of relocation entries is
shown in Figure 5.

• r_offset indicates the location at which the relocation should be applied.
For a relocatable file, this is the offset, in bytes, from the beginning of the
section to the beginning of the storage unit being relocated. For an
executable or shared object, this is the virtual address of the storage unit
being relocated.

• r_info contains both a symbol table index and a relocation type. The
symbol table index identifies the symbol whose value should be used in
the relocation. Relocation types are processor specific. The symbol table
index is obtained by applying the ELF64_R_SYM macro to this field, and the
relocation type is obtained by applying the ELF64_R_TYPE macro to this
field. The ELF64_R_INFO macro combines a symbol table index and a
relocation type to produce a value for this field. These macros are defined
as follows:

#define ELF64_R_SYM(i)((i) >> 32)
#define ELF64_R_TYPE(i)((i) & 0xf f f f f f f f L)
#define ELF64_R_INFO(s, t)(((s) << 32) + ((t) & 0xf f f f f f f f L))

STT_FILE 4 Source file associated with the
object file

STT_LOOS 10 Environment-specific use

STT_HIOS 12

STT_LOPROC 13 Processor-specific use

STT_HIPROC 15

Table 15. Symbol Types (Continued)

Name Value Meaning

typedef struct
{

Elf64_Addr r_offset; /* Address of reference */
Elf64_Xword r_info; /* Symbol index and type of relocation */

} Elf64_Rel;

typedef struct
{

Elf64_Addr r_offset; /* Address of reference */
Elf64_Xword r_info; /* Symbol index and type of relocation */
Elf64_Sxword r_addend; /* Constant part of expression */

} Elf64_Rela;

 Figure 5. ELF-64 Relocation Entries
 Relocations 11

• r_addend specifies a constant addend used to compute the value to be
stored in the relocated field.

8. Program header table

In executable and shared object files, sections are grouped into segments for
loading. The program header table contains a list of entries describing each
segment. The structure of the program header table entry is shown in Figure 6.

• p_type identifies the type of segment. The processor-independent
segment types are shown in Table 16.

• p_flags contains the segment attributes. The processor-independent flags
are shown in Table 17. The top eight bits are reserved for processor-
specific use, and the next eight bits are reserved for environment-specific
use.

• p_offset contains the offset, in bytes, of the segment from the beginning of
the file.

• p_vaddr contains the virtual address of the segment in memory.

• p_paddr is reserved for systems with physical addressing.

• p_filesz contains the size, in bytes, of the file image of the segment.

• p_memsz contains the size, in bytes, of the memory image of the segment.

• p_align specifies the alignment constraint for the segment. Must be a
power of two. The values of p_offset and p_vaddr must be congruent modulo
the alignment.

typedef struct
{

Elf64_Word p_type; /* Type of segment */
Elf64_Word p_flags; /* Segment attributes */
Elf64_Off p_offset; /* Offset in file */
Elf64_Addr p_vaddr; /* Virtual address in memory */
Elf64_Addr p_paddr; /* Reserved */
Elf64_Xword p_filesz; /* Size of segment in file */
Elf64_Xword p_memsz; /* Size of segment in memory */
Elf64_Xword p_align; /* Alignment of segment */

} Elf64_Phdr;

 Figure 6. ELF-64 Program Header Table Entry

Table 16. Segment Types, p_type

Name Value Meaning

PT_NULL 0 Unused entry

PT_LOAD 1 Loadable segment

PT_DYNAMIC 2 Dynamic linking tables

PT_INTERP 3 Program interpreter path name

PT_NOTE 4 Note sections
12 ELF-64 Object File Format, Version 1.5 Draft 2

9. Note sections

Sections of type SHT_NOTE and segments of type PT_NOTE are used by compilers
and other tools to mark an object file with special information that has special
meaning to a particular tool set. These sections and segments contain any
number of note entries, each of which is an array of 8-byte words in the byte
order defined in the ELF file header. The format of a note entry is shown in
Figure 7.

 Figure 7. Format of a Note Section

• namesz and name The first word in the entry, namesz, identifies the length, in
bytes, of a name identifying the entry’s owner or originator. The name field
contains a null-terminated string, with padding as necessary to ensure 8-

PT_SHLIB 5 Reserved

PT_PHDR 6 Program header table

PT_LOOS 0x60000000 Environment-specific use

PT_HIOS 0x6FFFFFFF

PT_LOPROC 0x70000000 Processor-specific use

PT_HIPROC 0x7FFFFFFF

Table 17. Segment Attributes, p_flags

Name Value Meaning

PF_X 0x1 Execute permission

PF_W 0x2 Write permission

PF_R 0x4 Read permission

PF_MASKOS 0x00FF0000 These flag bits are reserved for
environment-specific use

PF_MASKPROC 0xFF000000 These flag bits are reserved for
processor-specific use

Table 16. Segment Types, p_type (Continued)

Name Value Meaning

namesz

descsz

type

name

desc
 Note sections 13

byte alignment for the descriptor field. The length does not include the
terminating null or the padding. By convention, each vendor should use its
own name in this field.

• descsz and desc The second word in the entry, descsz, identifies the length of
the note descriptor. The desc field contains the contents of the note,
followed by padding as necessary to ensure 8-byte alignment for the next
note entry. The format and interpretation of the note contents are
determined solely by the name and type fields, and are unspecified by the
ELF standard.

• type The third word contains a number that determines, along with the
originator’s name, the interpretation of the note contents. Each originator
controls its own types.

10. Dynamic table

Dynamically-bound object files will have a PT_DYNAMIC program header entry.
This program header entry refers to a segment containing the .dynamic section,
whose contents are an array of Elf64_Dyn structures. The dynamic structure is
shown in Figure 8.

• d_tag Identifies the type of dynamic table entry. The type determines the
interpretation of the d_un union. The processor-independent dynamic
table entry types are shown in Table 18. Other values, in the range
0x7000 0000–0x7FFF FFFF, may be defined as processor-specific types.

String table offsets are relative to the beginning of the table identified by
the DT_STRTAB entry. All strings in the string table must be null-terminated.

• d_val This union member is used to represent integer values.

• d_ptr This union member is used to represent program virtual addresses.
These addresses are link-time virtual addresses, and must be relocated to
match the object file’s actual load address. This relocation must be done
implicitly; there are no dynamic relocations for these entries.

typedef struct
{

Elf64_Sxword d_tag;
union {

Elf64_Xword d_val;
Elf64_Addr d_ptr;

} d_un;
} Elf64_Dyn;

extern Elf64_Dyn _DYNAMIC[];

 Figure 8. Dynamic Table Structure

Table 18. Dynamic Table Entries

Name Value d_un Meaning

DT_NULL 0 ignored Marks the end of the dynamic array

DT_NEEDED 1 d_val The string table offset of the name of a needed library.
14 ELF-64 Object File Format, Version 1.5 Draft 2

DT_PLTRELSZ 2 d_val Total size, in bytes, of the relocation entries associated with
the procedure linkage table.

DT_PLTGOT 3 d_ptr Contains an address associated with the linkage table. The
specific meaning of this field is processor-dependent.

DT_HASH 4 d_ptr Address of the symbol hash table, described below.

DT_STRTAB 5 d_ptr Address of the dynamic string table.

DT_SYMTAB 6 d_ptr Address of the dynamic symbol table.

DT_RELA 7 d_ptr Address of a relocation table with Elf64_Rela entries.

DT_RELASZ 8 d_val Total size, in bytes, of the DT_RELA relocation table.

DT_RELAENT 9 d_val Size, in bytes, of each DT_RELA relocation entry.

DT_STRSZ 10 d_val Total size, in bytes, of the string table.

DT_SYMENT 11 d_val Size, in bytes, of each symbol table entry.

DT_INIT 12 d_ptr Address of the initialization function.

DT_FINI 13 d_ptr Address of the termination function.

DT_SONAME 14 d_val The string table offset of the name of this shared object.

DT_RPATH 15 d_val The string table offset of a shared library search path string.

DT_SYMBOLIC 16 ignored The presence of this dynamic table entry modifies the
symbol resolution algorithm for references within the
library. Symbols defined within the library are used to
resolve references before the dynamic linker searches the
usual search path.

DT_REL 17 d_ptr Address of a relocation table with Elf64_Rel entries.

DT_RELSZ 18 d_val Total size, in bytes, of the DT_REL relocation table.

DT_RELENT 19 d_val Size, in bytes, of each DT_REL relocation entry.

DT_PLTREL 20 d_val Type of relocation entry used for the procedure linkage
table. The d_val member contains either DT_REL or DT_RELA.

DT_DEBUG 21 d_ptr Reserved for debugger use.

DT_TEXTREL 22 ignored The presence of this dynamic table entry signals that the
relocation table contains relocations for a non-writable
segment.

DT_JMPREL 23 d_ptr Address of the relocations associated with the procedure
linkage table.

DT_BIND_NOW 24 ignored The presence of this dynamic table entry signals that the
dynamic loader should process all relocations for this object
before transferring control to the program.

DT_INIT_ARRAY 25 d_ptr Pointer to an array of pointers to initialization functions.

DT_FINI_ARRAY 26 d_ptr Pointer to an array of pointers to termination functions.

DT_INIT_ARRAYSZ 27 d_val Size, in bytes, of the array of initialization functions.

DT_FINI_ARRAYSZ 28 d_val Size, in bytes, of the array of termination functions.

DT_LOOS 0x60000000 Defines a range of dynamic table tags that are reserved for
environment-specific use.

Table 18. Dynamic Table Entries (Continued)

Name Value d_un Meaning
 Dynamic table 15

11. Hash table

The dynamic symbol table can be accessed efficiently through the use of a
hash table. The hash table is part of a loaded program segment, typically in the
.hash section, and is pointed to by the DT_HASH entry in the dynamic table. The
hash table is an array of Elf64_Word objects, organized as shown in Figure 9.

 Figure 9. Symbol Hash Table

The bucket array forms the hash table itself. The number of entries in the hash
table is given by the first word, nbucket, and may be chosen arbitrarily.

The entries in the chain array parallel the symbol table—there is one entry in
the chain table for each symbol in the symbol table, so nchain should equal the
number of symbol table entries.

Symbols in the symbol table are organized into hash chains, one chain per
bucket. A hash function, shown in Figure 10, computes a hash value x for a
given symbol name. The value of bucket[x % nbucket] is the symbol table index for
the first symbol on the hash chain. The index next symbol on the hash chain is
given by the entry in the chain array with the same index. The hash chain can be
followed until a chain array entry equal to STN_UNDEF is found, marking the end
of the chain.

DT_HIOS 0x6FFFFFFF

DT_LOPROC 0x70000000 Defines a range of dynamic table tags that are reserved for
processor-specific use.

DT_HIPROC 0x7FFFFFFF

Table 18. Dynamic Table Entries (Continued)

Name Value d_un Meaning

nbucket

nchain
bucket[0]

. . .

bucket[nbucket–1]
chain[0]

. . .

chain[nchain–1]
16 ELF-64 Object File Format, Version 1.5 Draft 2

unsigned long
elf64_hash(const unsigned char *name)
{

unsigned long h = 0, g;

while (*name) {
h = (h << 4) + *name++;
if (g = h & 0xf0000000)

h ^= g >> 24;
h &= 0x0f f f f f f f ;

}
return h;

}

 Figure 10. Hash Function
 Hash table 17

18 ELF-64 Object File Format, Version 1.5 Draft 2

	1. Overview of an ELF file
	Figure 1.�� Structure of an ELF File

	2. Data representation
	Table 1.�� ELF-64 Data Types

	3. File header
	Figure 2.�� ELF-64 Header
	Table 2.�� ELF Identification, e_ident
	Table 3.�� Object File Classes, e_ident[EI_CLASS]
	Table 4.�� Data Encodings, e_ident[EI_DATA]
	Table 5.�� Operating System and ABI Identifiers, e_ident[EI_OSABI]
	Table 6.�� Object File Types, e_type

	4. Sections
	Section indices
	Table 7.�� Special Section Indices
	Section header entries
	Figure 3.�� ELF-64 Section Header
	Table 8.�� Section Types, sh_type
	Table 9.�� Section Attributes, sh_flags �
	Table 10.�� Use of the sh_link Field
	Table 11.�� Use of the sh_info Field
	Standard sections
	Table 12.�� Standard Sections for Code and Data�
	Table 13.�� Other Standard Sections �

	5. String tables
	6. Symbol table
	Figure 4.�� ELF-64 Symbol Table Entry
	Table 14.�� Symbol Bindings
	Table 15.�� Symbol Types (Continued)

	7. Relocations
	Figure 5.�� ELF-64 Relocation Entries

	8. Program header table
	Figure 6.�� ELF-64 Program Header Table Entry
	Table 16.�� Segment Types, p_type (Continued)
	Table 17.�� Segment Attributes, p_flags

	9. Note sections
	Figure 7.�� Format of a Note Section

	10. Dynamic table
	Figure 8.�� Dynamic Table Structure
	Table 18.�� Dynamic Table Entries (Continued)

	11. Hash table
	Figure 9.�� Symbol Hash Table
	Figure 10.�� Hash Function

