
Watcom Debugger

User’s Guide

Edition 11.0c

Notice of Copyright
Copyright 2000 Sybase, Inc. and its subsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of Sybase, Inc. and its subsidiaries.

Printed in U.S.A.

ii

Table of Contents

Introduction ... 1

1 Overview ... 3
1.1 Introduction .. 3
1.2 New Features .. 3

1.2.1 User Interface ... 3
1.2.2 Reverse Execution .. 4
1.2.3 Replay .. 4
1.2.4 Stack Unwinding .. 4
1.2.5 Simplified Breakpoints ... 4
1.2.6 Context Sensitive Menus .. 4
1.2.7 Buttons ... 5

1.3 Common Menu Items ... 5

Preparing a Program to be Debugged .. 7

2 Preparing a Program to be Debugged ... 9
2.1 Compiler Debugging Options ... 9
2.2 Linker Debugging Options ... 10
2.3 Debugger Settings ... 11

Starting the Debugger .. 13

3 Starting Up the Debugger ... 15
3.1 Watcom Debugger Command Line .. 15
3.2 Common Switches .. 16
3.3 DOS and Windows Options ... 19
3.4 DOS Specific Options .. 20
3.5 Windows Specific Options ... 21
3.6 QNX Options .. 22
3.7 Environment Variables ... 23

3.7.1 WD Environment Variable ... 23
3.7.2 WD Environment Variable in QNX ... 23

Watcom Debugger Environment ... 25

4 The Watcom Debugger Environment ... 27
4.1 Debugger Windows .. 27

4.1.1 Window Controls ... 27

iii

Table of Contents

4.1.2 The Current Window .. 28
4.1.3 Controlling the Size and Location of Windows 28

4.1.3.1 Moving Windows .. 28
4.1.3.2 Resizing Windows ... 29
4.1.3.3 Zooming Windows .. 29
4.1.3.4 Context Sensitive Pop-up Menus 29
4.1.3.5 Text Selection .. 29

4.2 Menus ... 30
4.3 The Toolbar .. 30
4.4 Dialogs .. 31
4.5 Accelerators .. 32

4.5.1 Default Accelerators ... 33
4.5.2 Turbo Emulation Accelerators ... 34

4.6 The File Menu .. 35
4.6.1 The Options Dialog .. 36
4.6.2 The Window Options Dialog ... 38

4.6.2.1 The Assembly Options ... 39
4.6.2.2 The Variables Options ... 39
4.6.2.3 The File Options .. 39
4.6.2.4 The Functions and Globals Options 40
4.6.2.5 The Modules Options ... 40

4.7 The Code Menu .. 40
4.8 The Data Menu ... 41
4.9 The Window Menu ... 42
4.10 The Action Menu .. 42
4.11 The Help Menu ... 43
4.12 The Status Window .. 43
4.13 The Log Window .. 44
4.14 The Accelerator Window .. 45

Navigating Through a Program ... 47

5 Navigating Through a Program ... 49
5.1 The Search Menu .. 49

5.1.1 Entering Search Strings .. 50
5.2 The Source Window ... 51
5.3 The File Window .. 53
5.4 The Modules Window .. 53
5.5 The Globals Window .. 55
5.6 The Functions Window .. 56
5.7 The Images Window ... 57

iv

Table of Contents

Controlling Program Execution ... 59

6 Controlling Program Execution .. 61
6.1 The Run Menu .. 61
6.2 The Undo Menu .. 63
6.3 The Replay Window ... 65
6.4 The Calls Window .. 66
6.5 The Thread Window ... 67

Examining and Modifying the Program State ... 69

7 Examining and Modifying the Program State ... 71
7.1 Variable and Watch Windows .. 71
7.2 The Memory and Stack Windows .. 77

7.2.1 Following Linked Lists .. 80
7.2.2 Traversing Arrays ... 81

Breakpoints .. 83

8 Breakpoints ... 85
8.1 How to Use Breakpoints during a Debugging Session 86

8.1.1 Setting Simple Breakpoints .. 86
8.1.2 Clearing, Disabling, and Enabling Breakpoints 87

8.2 The Break Menu ... 87
8.3 The Break Window ... 89
8.4 The Breakpoint Dialog ... 90

Assembly Level Debugging .. 95

9 Assembly Level Debugging .. 97
9.1 The CPU Register Window .. 97
9.2 The Assembly Window .. 98
9.3 The I/O Ports Window .. 100
9.4 The FPU Registers Window ... 101
9.5 The MMX Registers Window .. 102

Remote Debugging .. 103

v

Table of Contents

10 Remote Debugging ... 105
10.1 Overview .. 105
10.2 Link Descriptions ... 110

10.2.1 NOV (Novell SPX) .. 110
10.2.2 NET (NetBIOS) ... 111
10.2.3 PAR (Parallel) .. 111
10.2.4 SER (Serial) ... 112
10.2.5 WIN (Windows 3.x/95 Virtual DOS Machine) 114
10.2.6 NMP (Named Pipes) .. 115
10.2.7 VDM (Virtual DOS Machine) ... 116
10.2.8 TCP/IP (Internet Packets) .. 117

10.3 Specifying Files on Remote and Local Machines 119

Interrupting A Running Program ... 121

11 Interrupting a Running Program ... 123
11.1 Overview .. 123
11.2 DOS .. 123
11.3 Windows 3.x ... 123
11.4 Windows NT, Windows 95 .. 123
11.5 OS/2 .. 124
11.6 NetWare .. 124
11.7 QNX .. 125

Operating System specifics ... 127

12 Operating System Specifics .. 129
12.1 Debugging 32-bit DOS Extender Applications .. 129

12.1.1 Debugging DOS/4G(W) 32-bit DOS Extender Applications 130
12.1.2 Debugging Phar Lap 32-bit DOS Extender Applications 130

12.2 Debugging AutoCAD Applications .. 131
12.3 Debugging a Novell NLM .. 132
12.4 Debugging Graphics Applications .. 133
12.5 Debugging Windows 3.x Applications ... 133
12.6 Debugging Dynamic Link Libraries ... 134
12.7 Disabling Use of 386/486 Debug Registers .. 135
12.8 Debugging Under QNX .. 135

12.8.1 Debugging Under QNX Using the Postmortem Dump Facility .. 136
12.8.2 Search Order for Watcom Debugger Support Files under

QNX ... 138

vi

Table of Contents

Expressions .. 139

13 Watcom Debugger Expression Handling .. 141
13.1 Introduction .. 141
13.2 General Rules of Expression Handling ... 141
13.3 Language Independent Variables and Constants .. 142

13.3.1 Symbol Names ... 142
13.3.2 Line Numbers ... 145
13.3.3 Constants .. 146

13.3.3.1 Integer Constants ... 146
13.3.3.2 Real Constants ... 147
13.3.3.3 Complex Constant (FORTRAN Only) 148
13.3.3.4 Character Constant (C Only) ... 148
13.3.3.5 Character String Constant (FORTRAN Only) 149

13.3.4 Memory References ... 149
13.3.5 Predefined Debugger Variables ... 150
13.3.6 Register Aggregates ... 151

13.4 Operators for the C Grammar ... 152
13.4.1 Assignment Operators for the C Grammar 153
13.4.2 Logical Operators for the C Grammar ... 154
13.4.3 Bit Operators for the C Grammar ... 154
13.4.4 Relational Operators for the C Grammar 154
13.4.5 Arithmetic/Logical Shift Operators for the C Grammar 155
13.4.6 Binary Arithmetic Operators for the C Grammar 155
13.4.7 Unary Arithmetic Operators for the C Grammar 156
13.4.8 Special Unary Operators for the C Grammar 157
13.4.9 Binary Address Operator for the C Grammar 158
13.4.10 Primary Expression Operators for the C Grammar 159

13.5 Operators for the C++ Grammar .. 160
13.5.1 Ambiguity Resolution in the C++ Grammar 162
13.5.2 The "this" Operator for the C++ Grammar 162
13.5.3 "operator" Functions in the C++ Grammar 163
13.5.4 Scope Operator "::" for the C++ Grammar 163
13.5.5 Constructor/Destructor Functions in the C++ Grammar 164

13.6 Operators for the FORTRAN Grammar ... 164
13.6.1 Assignment Operators for the FORTRAN Grammar 166
13.6.2 Logical Operators for the FORTRAN Grammar 167
13.6.3 Bit Operators for the FORTRAN Grammar 167
13.6.4 Relational Operators for the FORTRAN Grammar 167
13.6.5 Arithmetic/Logical Shift Operators for the FORTRAN

Grammar ... 168
13.6.6 Concatenation Operator for the FORTRAN Grammar 168

vii

Table of Contents

13.6.7 Binary Arithmetic Operators for the FORTRAN Grammar 168
13.6.8 Unary Arithmetic Operators for the FORTRAN Grammar 169
13.6.9 Special Unary Operators for the FORTRAN Grammar 170
13.6.10 Binary Address Operator for the FORTRAN Grammar 170
13.6.11 Primary Expression Operators for the FORTRAN Grammar 170

Appendices .. 173

A. Debugger Commands .. 175
A.1 Syntax Definitions ... 175
A.2 Command Summary .. 177

A.2.1 Accelerate .. 177
A.2.2 Break ... 178
A.2.3 Call .. 179
A.2.4 CAPture ... 181
A.2.5 COnfigfile .. 181
A.2.6 Display .. 181
A.2.7 DO (or /) .. 183
A.2.8 ERror ... 183
A.2.9 Examine ... 183
A.2.10 Flip .. 185
A.2.11 FOnt ... 185
A.2.12 Go .. 185
A.2.13 Help ... 186
A.2.14 HOok ... 186
A.2.15 IF ... 187
A.2.16 INvoke (or <) ... 187
A.2.17 Log (or >) .. 188
A.2.18 MOdify .. 188
A.2.19 NEW .. 189
A.2.20 PAint .. 189
A.2.21 Print (or ?) ... 192
A.2.22 Quit .. 194
A.2.23 RECord .. 194
A.2.24 Register .. 194
A.2.25 REMark (or *) ... 195
A.2.26 Set .. 195
A.2.27 SHow ... 195
A.2.28 SKip ... 196
A.2.29 STackpos <intexpr> .. 196
A.2.30 SYstem (or !) ... 196

viii

Table of Contents

A.2.31 THread (or ~) ... 197
A.2.32 Trace .. 197
A.2.33 Undo .. 198
A.2.34 View .. 198
A.2.35 While ... 198
A.2.36 WIndow ... 198

B. Predefined Symbols ... 201

C. Wiring For Remote Debugging ... 209
C.1 Serial Port Wiring Considerations ... 209
C.2 Parallel Port Wiring Considerations .. 210

ix

List of Figures

Figure 1. The Debugger Window ... 30
Figure 2. A Typical Dialog ... 31
Figure 3. The Options Dialog ... 36
Figure 4. The Window Options Dialog ... 38
Figure 5. The Log Window ... 44
Figure 6. The Accelerator Window .. 45
Figure 7. Entering a search string ... 50
Figure 8. The Source Window .. 51
Figure 9. The Modules Window ... 53
Figure 10. The Globals Window ... 55
Figure 11. The Functions Window ... 56
Figure 12. The Images Window .. 57
Figure 13. The Replay Window .. 65
Figure 14. The Calls Window ... 66
Figure 15. The Thread Window .. 67
Figure 16. The Watch and Variable Window ... 71
Figure 17. The Memory Window ... 77
Figure 18. The Break Window .. 89
Figure 19. The Breakpoint Dialog .. 90
Figure 20. The CPU Register Window ... 97
Figure 21. The Assembly Window ... 98
Figure 22. The I/O Window .. 100
Figure 23. The FPU Registers Window .. 101
Figure 24. The MMX Registers Window ... 102
Figure 25. Serial Port Wiring Scheme .. 209
Figure 26. WATCOM Cable Wiring Scheme ... 211
Figure 27. LapLink Cable Wiring Scheme ... 211
Figure 28. Flying Dutchman Cable Wiring Scheme ... 212

x

Introduction

Introduction

2

1 Overview

1.1 Introduction
The Watcom Debugger is a powerful debugging tool that helps you analyse your programs
and find out why they are not behaving as you expect. It allows you to single step through
your code, set break points based on complex conditions, modify variables and memory,
expand structures and classes and much more. With the debugger you can debug programs
that run on the following platforms:

• DOS
• Tenberry Software DOS/4G Extender
• Phar Lap DOS Extender
• Windows 3.x
• Windows NT
• Windows 95
• 16 and 32-bit OS/2
• QNX
• Novell NetWare
• AutoCAD ADS

1.2 New Features
The latest version of the debugger contains many new features that you should know about.

1.2.1 User Interface

The debugger’s user interface has been redesigned. There are GUI versions of the debugger
that run under Windows 3.x, Windows NT, Windows 95, and 32-bit OS/2. There are also
character mode versions that run under DOS, Windows 3.x, OS/2, and QNX. All versions
share a common user interface incorporating powerful features like context sensitive menus,
eliminating the need for command oriented debugging.

New Features 3

Introduction

1.2.2 Reverse Execution

The debugger keeps a history of your interactions that modify the state of the program you are
debugging. This includes the effects of statements in your program that you trace. The size
of this history is limited only by available memory. Undo and Redo allow you to step
backward and forward through this history. This allows you to reverse the effects of tracing
over simple statements in your program. You can also reverse any accidental interactions that
affect your program’s state. See "The Undo Menu" on page 63.

1.2.3 Replay

The debugger keeps a history of all interactions that affect the execution of your program such
as setting break points and tracing. Replay allows you to restart the application and run the
application back to a previous point. This is particularly useful when you accidentally trace
over a call. This replay information may be saved to a file in order to resume a debugging
session at a later date. See "The Replay Window" on page 65.

1.2.4 Stack Unwinding

You can navigate up and down the program’s call stack to see where the currently executing
routine was called from. As you do this, all other windows in the debugger update
automatically. Local variables in the calling routines will be displayed along with their
correct values. See "The Undo Menu" on page 63.

1.2.5 Simplified Breakpoints

The debugger allows you to set breakpoints when code is executed or data is modified. These
breakpoints may be conditional based on an expression or a countdown. Simple breakpoints
are created with a keystroke or single mouse click. More complex breakpoints are entered
using a dialog. See "The Breakpoint Dialog" on page 90.

1.2.6 Context Sensitive Menus

Context sensitive menus are present in each debugger window. To use them, you select an
item from the the screen using the right mouse button. A menu containing a list of actions
appropriate for that item is displayed. You can use this capability to perform actions such as
displaying the value of an expression which you have selected from the source window.

4 New Features

Overview

1.2.7 Buttons

The debugger contains small buttons that appear on the left side of some windows. These
buttons are shortcuts for the most common operations. For example, you can set and clear a
breakpoint by clicking on the button to the left of a source line.

1.3 Common Menu Items
The debugger’s context sensitive menus contain many useful menu items. Each of these items
behave differently depending upon the selected item. A description of some of the commonly
found menu items follows:

Inspect Inspect displays the selected item. The debugger determines how to best display
the selected item based on its type. If you inspect a variable or an expression,
the debugger opens a new window showing its value. If you inspect a function,
the debugger positions the source code window at the function definition. If you
inspect a hexadecimal address from the assembly window, a window showing
memory at that address is opened, and so on. Experimenting with inspect will
help you learn to use the debugger effectively.

Modify Modify lets you change the selected item. You will normally be prompted for a
new value. For example, select the name of a variable from any window and
choose Modify to change its value.

New New adds another item to a list of items displayed in a window. For example,
choosing New in the Break Point window lets you create a new breakpoint.

Delete Delete removes the selected item from the window. For example, you can use
Delete to remove a variable from the Watches window.

Source Source displays the source code associated with the selected item. The debugger
will reposition the source code window at the appropriate line. Selecting a
module name and choosing Source will display the module’s source code.

Assembly Assembly positions the assembly code window at the code associated with the
selected item.

Functions Functions shows a list of all functions associated with the selected item or
window. For example, choose Functions in the source window to see a list of all
functions defined in that module.

Common Menu Items 5

Introduction

Watch Watch adds the selected variable or expression to the Watches window. This
allows you to watch its value change as the program runs. Note that this is not a
watchpoint. Execution will not stop when the variable changes. See the
chapter entitled "Breakpoints" on page 85 for information about setting
watchpoints.

Break Break sets a breakpoint based on the selected item. If a variable is selected, the
program will stop when the variable is modified. If a function is selected, the
program will stop when the function executes.

Globals Globals shows a list of global variables associated with the selected item.

Show Show will present a cascaded menu that let’s you show things related to the
selected item. For example, you can use Line from the Show menu in the source
code window to see the line number of the selected line.

Type Type will present a cascaded menu that allows you to change the display type of
the window or selected item.

6 Common Menu Items

Preparing a Program to be
Debugged

Preparing a Program to be Debugged

8

2 Preparing a Program to be Debugged

Before you can debug a program, you must put debugging information into the code.

There are three different formats of debugging information that can be put into the code —
"Watcom", "Dwarf" or "Codeview". Starting with version 10.7, the default format is "Dwarf".
In earlier releases, the default was "Watcom". Although the debugger supports all three
formats, it is best if you allow the default format to be generated.

To produce an executable that has debugging information, you need to:

1. specify the correct compiler options when you compile, and
2. specify the correct linker options when you link.

During development, use the d2 option of the compiler and use the debug all directive at the
beginning of your linker command line or at the beginning of your linker directive file. This
will ensure that maximum debugging information is available during your debugging session.
Change to the d1 option when you need to create a distribution version of your product. This
is necessary since the d2 option disables most compiler optimizations, whereas d1 will not
affect the quality of generated code. During production, you can use the linker’s symfile
option to put the d1 debugging information into a separate file. This lets you distribute a
production quality executable yet still have the luxury of source line debugging when bugs are
reported.

2.1 Compiler Debugging Options
d0 The d0 option will generate no debugging information. This is the default

option.

d1 The d1 option will generate debugging information for global symbols and line
numbers.

d1+ The d1+ option will generate debugging information for global symbols and line
numbers, and typing information for local structs and arrays.

d2 The d2 option will generate the most debugging information that is normally
needed, including global information, line numbers, types, and local variables.

Compiler Debugging Options 9

Preparing a Program to be Debugged

d2i The d2i option is identical to d2 but does not permit inlining of functions. This
option can result in larger object and/or executable files (we are discussing both
"code" and "file" size here).

d2t The d2t option is identical to d2 but does not include type name debugging
information. This option can result in smaller object and/or executable files (we
are discussing "file" size here).

d3 The d3 option will generate all debugging information generated by d2. In
addition, it will generate information about all types defined in a compilation
unit, regardless of whether they are used in that compilation unit. This option
will create very large objects and executable files. Do not use it unless you
want to have access to types that have no variables associated with them.

2.2 Linker Debugging Options
The linker is the tool that puts together a complete program and sets up the debugging
information for all the modules in the executable file. There is a linker directive that tells the
linker when it should include debugging information from the modules.

For "Dwarf" format debugging information, the directive is:

DEBUG DWARF

For "Watcom" format debugging information, there are two levels of debugging information
that you should collect during the link. They are:

DEBUG WATCOM LINES global names, source line numbers

DEBUG WATCOM ALL global names, source line numbers, local variables, typing
information

Linker DEBUG directives are position dependent so you must make sure that the directive
precedes the object files and libraries that require debugging information.

For instance, if the file "mylink.lnk" contained:

10 Linker Debugging Options

Preparing a Program to be Debugged

#
invoke with: wlink @mylink
#
file main
debug watcom lines
file input, output
debug watcom all
file process

then the files input and output will have global names and source line information available
during debugging. All debugging information in the file process is available during
debugging. No information is available for main except global names.

If you use a DEBUG directive anywhere, all files, including main, will have global name
information.

2.3 Debugger Settings
You may encounter problems if the debugger does not know where to find the source code
associated with your executable. The name of the source file included in the debugging
information is the path and the original name from the compiler’s command line. If the
original filename is no longer valid (i.e., you have moved the source to another directory), you
must tell the debugger where to find the source files by choosing Source Path from the File
menu.

Debugger Settings 11

Preparing a Program to be Debugged

12 Debugger Settings

Starting the Debugger

Starting the Debugger

14

3 Starting Up the Debugger

The following topics are discussed:

• "Watcom Debugger Command Line"

• "Common Switches" on page 16

• "DOS and Windows Options" on page 19

• "DOS Specific Options" on page 20

• "Windows Specific Options" on page 21

• "QNX Options" on page 22

• "Environment Variables" on page 23

3.1 Watcom Debugger Command Line
There are several versions of the debugger.

binw\wd.exe This is the DOS character-mode debugger.

binw\wdc.exe This is the Windows 3.x character-mode debugger.

binw\wdw.exe This is the Windows 3.x windowed (GUI) debugger.

binnt\wd.exe This is the Windows NT/95 character-mode debugger.

binnt\wdw.exe This is the Windows NT/95 windowed (GUI) debugger.

binp\wd.exe This is the OS/2 character-mode debugger.

binp\wdw.exe This is the OS/2 windowed (GUI) debugger.

Watcom Debugger Command Line 15

Starting the Debugger

wd This is the name of the debugger included with QNX.

See the sections entitled "Operating System Specifics" on page 129 and "Remote Debugging"
on page 105 for information on which version to select for your situation.

On the debugger command line, you can specify options that you want to use during your
debugging session. Acceptable option short forms are indicated in capital letters. For
example, the /TRap option may be shortened to /tr.

3.2 Common Switches
The following switches are applicable to all operating systems.

/TRap=trap_file[;trap_parm]
specifies an executable helper program that the debugger uses to control the
application being debugged, or to communicate across a remote link. It is called
a "trap file" since the interrupts used for debugging are sometimes called "traps".
The trap option selects the appropriate trap file to use. This option must be
specified when remote debugging, debugging DOS extender applications,
debugging OS/2 exception handlers, or debugging an AutoCAD ADS
application.

The remote trap files themselves have startup parameters. This is specified
following the semi-colon. See "Remote Debugging" on page 105. Normally
you do not have to specify a trap file. If you do not specify the trap option, the
default trap file that supports local debugging is loaded. There are several
exceptions.

1. To debug a Tenberry Software 32-bit DOS/4G(W) application, you
must use /TRAP=RSI.

2. To debug a Phar Lap 32-bit application, you must use /TRAP=PLS.
3. To debug an OS/2 exception handler, you must use /TRAP=STD 2

which tells the debugger to catch exceptions only on the second
chance (normally it would be the debugger that traps the exception).

4. To debug an AutoCAD add on, you must use /TRAP=ADS.
5. To debug an OS/2 16-bit application under Phar Lap’s RUN286 DOS

extender, you must use /TRAP=STD16.

/LInes=n controls the number of lines used by a character mode debugger. The number of
lines available depends on the operating system and your video card. The values
25, 43 and 50 are often supported.

16 Common Switches

Starting Up the Debugger

/COlumns=n
controls the number of columns used by a character mode debugger. The
number of columns available depends on the operating system and your video
card. If your system does not support the requested number of columns, this
option is ignored

/Invoke=file may be used to specify an alternate name for the debugger configuration file
which is to be used at start-up time. The default file name is "WD.DBG".
Debugger configuration files are found in the current directory or one of the
directories in your PATH.

/NOInvoke specifies that the default debugger configuration file is not to be invoked.

/NOMouse requests that the debugger ignore any attached mouse. This may be necessary if
you are trying to debug mouse events received by your application. This option
ensures that the debugger will not interfere with the mouse.

/DYnamic=number
specifies the amount of dynamic storage that the debugger is to set aside for its
own use on startup. The default amount that is set aside is 500K bytes. The
larger the amount, the less memory will be available for the application to be
debugged. You only need to use this option if the debugger runs out of
memory, or is causing your application to run out of memory. If you are using
the remote debugging feature, the debugger will use as much available memory
as available.

/NOExports specifies that no exports (system symbols) should be loaded. It helps to speed
up load time when debugging remotely and marginally so when debugging
locally.

/LOcalinfo=local_file
is used primarily in conjunction with the remote debugging capabilities of the
debugger. It causes the debugger to use one or more local files as sources of
debugging information if the right conditions are met. When the debugger
observes that an executable file or Dynamic Link Library (DLL) is being loaded
with the same name (i.e., the path and extension have been stripped) as one of
the /localinfo files, then the named local file is used as a source of debugging
information. The named file can be an executable file, a DLL file (.dll), a
symbolic information file (.sym), or any other file with debugging information
attached.

Common Switches 17

Starting the Debugger

Example:
wd /local=c:\dlls\mydll.sym /local=c:\exes\myexe.exe /tr=par
myexe

In the above example, the debugger would obtain debugging information for any
executable or DLL called myexe or mydll from C:\EXES\MYEXE.EXE or
C:\DLLS\MYDLL.SYM respectively. Note that no path searching is done for
local files. The debugger tries to open the file exactly as specified in the
localinfo option.

See the section entitled "Remote Debugging" on page 105 for an explanation of
remote debugging.

/DOwnload specifies that executable file to be debugged is to be downloaded to the task
machine from the debugger machine. The debugger searches for the executable
file in the local path, and downloads it to the debug server’s current working
directory on the remote machine before starting to debug. Debugging
information is not downloaded, but is obtained locally, as in the localinfo option.
Note: Only the executable is downloaded; any required DLLs must be present
on the remote machine. Downloading is relatively fast if you are using one of
the TCP/IP (TCP) or Netware (NOV) remote links. Be sure to specify the file
extension if it is not ".exe".

Example:
wd /tr=nov;john /download sample.exe
wd /tr=nov;john /download sample.nlm

The debugger does not erase the file when the debugging session ends. So if
you debug the application again, it will check the timestamp, and if the file is
up-to-date, it doesn’t bother re-downloading it.

See the section entitled "Remote Debugging" on page 105 for an explanation of
remote debugging.

/REMotefiles
is used in conjunction with the remote debugging capabilities of the debugger. It
causes the debugger to look for all source files and debugger files on the remote
machine. When remotefiles is specified, all debugger files (except "trap" files)
and application source files are opened on the task machine rather than the
debugger machine. The trap file must be located on the debugger machine.

The PATH environment variable on the task machine is always used in locating
executable image files. When remotefiles is specified, the debugger also uses
the task machine’s PATH environment variable to locate debugger command

18 Common Switches

Starting Up the Debugger

files. See the section entitled "Remote Debugging" on page 105 for an
explanation of remote debugging. See the section entitled "Specifying Files on
Remote and Local Machines" on page 119 for an explanation of remote and
local file names.

/NOFpu requests that the debugger ignore the presence of a math coprocessor.

/NOSymbols requests that the debugger omit all debugging information when loading an
executable image. This option is useful if the debugger detects and tries to
load debugging information which is not valid.

/DIp=dipname
used to load a non-default Debug Information Processor (DIP). This option is
generally not needed since the debugger loads all DIPs that it finds by default.
See "The Images Window" on page 57.

3.3 DOS and Windows Options
The following switches apply to the DOS (binw\wd) and Windows 3.x character-mode
(binw\wdc) debuggers. Refer to the sections called "DOS Specific Options" on page 20 and
"Windows Specific Options" on page 21 for more switches relating to these environments.

/Monochrome
When two display devices are present in the system, this option indicates that the
Monochrome display is to be used as the debugger’s output device, leaving the
Color display for the application to use. Use this option in conjunction with the
Two option described below.

/Color, /Colour
When two display devices are present in the system, this option indicates that the
Colour display is to be used as the debugger’s output device. This option is used
in conjunction with the Two option described below.

/Ega43 When an Enhanced Graphics Adapter (EGA) is present, 43 lines of output are
displayed by a character mode debugger.

/Vga50 When a Video Graphics Array (VGA) is present, 50 lines of output are displayed
by a character mode debugger.

/Overwrite specifies that the debugger’s output can overwrite program output. In this mode,
the application and the debugger are forced to share the same display area.

DOS and Windows Options 19

Starting the Debugger

Do not use this option if you wish to debug a DOS graphics-mode application.

/Two specifies that a second monitor is connected to the system. If the monitor type
(Monochrome, Color, Colour, Ega43, Vga50) is not specified then the monitor
that is not currently being used is selected for the debugger’s screen. If the
monitor type is specified then the monitor corresponding to that type is used for
the debugger’s screen. This option may be used when debugging a DOS
graphics-mode application on the same machine and a second monitor is
available.

3.4 DOS Specific Options
Use the following switches for the DOS debuggers. For more DOS options, refer to the
section called "DOS and Windows Options" on page 19.

/Page specifies that page 0 of screen memory is to be used for the application’s screen
and that page 1 of screen memory should be used for the debugger’s screen.
This option may be selected when using a graphics adapter such as the CGA,
EGA or VGA. Using the Page option results in faster switching between the
application and debugger screens and makes use of the extra screen memory
available with the adapter. This is the default display option. Do not use this
option if you wish to debug a DOS graphics-mode application.

/Swap specifies that the application’s screen memory and the debugger’s screen
memory are to be swapped back and forth using a single page. The debugger
allocates an area in its own data space for the inactive screen. This reduces the
amount of memory available to the application. It also takes more time to switch
between the application and debugger screens. This option MUST be used
when debugging a DOS graphics-mode application and a second monitor is
not available.

The default display options are:

1. If you have a two display system, the debugger uses both displays
with the program output appearing on the active monitor and the
debugger output appearing on the alternate monitor. In other words,
the Two option is selected by default.

2. If you have one of the CGA, EGA or VGA graphics adapters installed
in your system then the debugger selects the Page option by default.

3. Under all other circumstances, the debugger selects the Swap option
by default.

20 DOS Specific Options

Starting Up the Debugger

/CHecksize=number
specifies the minimum amount of storage, in kilobytes, that the debugger is to
provide to DOS for the purpose of spawning a program while the debugger is
active. This option is useful when the application that is being debugged uses
up most or all of available storage, leaving insufficient memory to spawn
secondary programs. In order to provide the requested amount of free memory
to DOS, the debugger will checkpoint as much of the application as required.

Checkpointing involves temporarily storing a portion of the memory-resident
application on disk and then reusing the part of memory that it occupied for the
spawned program. When the spawned program terminates, the checkpointed
part of the application is restored to memory.

The default amount is 0K bytes. In this case, the spawned program may or may
not be run depending on how much free storage is available to DOS to run the
program.

Warning: If the application being debugged installs one or more interrupt
handlers, the use of this option could hang your system. Your
system could lock up if the debugger checkpoints a portion of the
application’s code that contains an interrupt handler.

/NOCHarremap
turns off the character re-mapping that the DOS debugger uses for displaying
dialogs and window frames. Use this option when trying to debug in an
environment where character remapping is not available. Windowed DOS
boxes under OS/2 do not support character re-mapping.

/NOGraphicsmouse
Turn off the graphics mouse emulation code that makes the mouse cursor look
like an arrow instead of a block. Use this option if the mouse cursor appears as
4 line drawing characters instead of an arrow.

3.5 Windows Specific Options
Use the following switches for the Windows character-mode debugger. Refer to the section
called "DOS and Windows Options" on page 19 for more Windows options.

Windows Specific Options 21

Starting the Debugger

/Fastswap specifies that Windows 3.x screen memory and the debugger’s screen memory
are to be swapped back and forth using a technique that is faster than the default
method of screen swapping but not guaranteed to work for all video adapters.
This option applies to Windows 3.x only. By default, the Windows 3.x version
of the debugger uses a more conservative (and slower) method that works with
all video adapters.

3.6 QNX Options
You can use the following switch for the QNX debugger.

-Console=console_spec
specifies the virtual console to use for debugger windows. This may be a
console number as in the following example.

Example:
-console=2

You may also use a full device name.

Example:
-console=//23/dev/ser1

In this case, the debugger will use that device for it’s input and output. The
debugger/application screen flipping features will be disabled.

You can also optionally follow the device name with a colon and a terminal
type.

Example:
-con=/dev/ttyp1:vt240

This will let the debugger know what kind of terminal it’s talking to so it can
initialize the user interface appropriately.

-COlumns=n
specifies the number of columns of the screen/window that the debugger should
attempt to establish.

-XConfig=string
specifies a set of X Windows configuration options to pass to xqsh.

22 QNX Options

Starting Up the Debugger

3.7 Environment Variables
You can use the WD environment variable to specify default options to be used by the
debugger. Once you have defined the environment variable, those options are used each time
you start the debugger.

3.7.1 WD Environment Variable

If the specification of an option involves the use of an "=" character, use the "#" character in
its place. This is required by the syntax of the "SET" command. Options found in the
environment variable are processed before options specified on the command line. The
following example illustrates how to define default options for the debugger:

Example:
C>set wd=/swap/lines#50

3.7.2 WD Environment Variable in QNX

The following example illustrates how to define default options for the debugger under QNX:

Example:
$ export "WD=-nofpu -console=3"

Under QNX, care must be taken to specify the environment variable name entirely in
uppercase letters.

Environment Variables 23

Starting the Debugger

24 Environment Variables

Watcom Debugger Environment

Watcom Debugger Environment

26

4 The Watcom Debugger Environment

This chapter describes the interactions you need in order to use the debugger.

4.1 Debugger Windows
The debugger displays its information in windows. Both the character and the GUI-based
debuggers use similar conventions for window manipulation.

4.1.1 Window Controls

Each window has the following controls

Minimize, Maximize, Restore
You can control the size of each window using the Minimize, Maximize, and
Restore buttons. The buttons appear on the top right corner of the window. The
Minimize button is the down arrow. When you click on the down arrow, the
window becomes an icon at the bottom of the screen. The Maximize button is
the up arrow. When you click on the up arrow, the window fills the whole
screen. The Restore button appears only when the window is maximized. It is
an up and down arrow. Click on the Restore button to put the window back to
its original size.

Close Each window has a Close button in the top left corner. Double-click on this
button to close the window.

System Menu
The System Menu contains menu items that operate on the window. It contains:

• Restore
• Move
• Size
• Minimize
• Maximize

Debugger Windows 27

Watcom Debugger Environment

You can activate the System Menu of the main window by clicking once on the
System Menu button (top, left-hand corner) or by typing ALT-Space. For
Microsoft Windows, you can type ALT-Hyphen to activate a child window’s
System Menu.

Scroll Bars Windows that contain information that cannot fit in the window have scroll bars.
Use the scroll bars to reposition the window so the information you want to see
is visible. The small box in the scroll bar indicates the current scroll position in
the window.

Title Each window is titled so that you know what information it contains. The title
appears in the bar at the top of the window.

Buttons Many windows have small buttons on the left hand side. These buttons are short
forms for performing the most common operations.

4.1.2 The Current Window

The current window is the one whose title bar is coloured. Press CTRL-TAB to move from
window to window.

4.1.3 Controlling the Size and Location of Windows

The following window operations are possible.

• "Moving Windows"

• "Resizing Windows" on page 29

• "Zooming Windows" on page 29

• "Context Sensitive Pop-up Menus" on page 29

• "Text Selection" on page 29

4.1.3.1 Moving Windows

To move a window, click in the Title bar and drag it to a new location. You can also choose
Move from the System Menu and use the cursor keys to reposition the window, pressing
ENTER when the window is in the right spot.

28 Debugger Windows

The Watcom Debugger Environment

4.1.3.2 Resizing Windows

In the GUI-based version of the debugger, you can resize a window’s width, height, or both.
Refer to the system documentation for details.

In the character-based version of the debugger, you can only resize a window from the
corners. Move the cursor to any corner of the window. Click and drag the mouse to resize the
window.

You can also choose Size from the System Menu to change the size of a window. Use the
cursor keys to resize the window, press ENTER when the window is the right size.

4.1.3.3 Zooming Windows

Choose Zoom from the Window menu to toggle a window between its maximized and normal
sizes.

4.1.3.4 Context Sensitive Pop-up Menus

The debugger has context sensitive pop-up menus for each window in the application. You
can access the menu either by pressing the right mouse button in the window or by typing
the period (.) key. You can then choose a menu item by typing the highlighted character or by
clicking the mouse on it.

If you have memorized the highlighted menu character, you can bypass the menu and activate
the menu item directly by pressing the CTRL key in conjunction with that character. The
items that appear in the menu depend on the current window. These menus are described in
detail throughout this document.

Note The Action item in the main menu is identical to the the context sensitive pop-up
menu for the current window and may be used instead of pop-up menus.

For more information on the choices presented in the pop-up menus, see the section entitled
"Variable and Watch Windows" on page 71.

4.1.3.5 Text Selection

Some windows, such as the Source and Assembly windows, allow you to select text. For
example, you might want to select a variable name or expression. Menu items will act on the
selected item.

Debugger Windows 29

Watcom Debugger Environment

You can select text with either the left or right mouse button. If you use the right button, the
pop-up menu appears when you release the button. With the keyboard, hold SHIFT while
using the cursor keys. You can select a single character and the debugger will automatically
extend the selection to include the entire surrounding word.

4.2 Menus
At the top of the debugger window are a number of menu items. You can select a menu item
with the mouse or by pressing ALT and the highlighted character from the menu title.

Many menu items have accelerators or keyboard equivalents. They appear to the right of the
menu item. As you learn the debugger, take time to learn the accelerators. They will help you
to use the debugger more effectively.

4.3 The Toolbar

Figure 1. The Debugger Window

30 The Toolbar

The Watcom Debugger Environment

The Toolbar appears under the menu in the GUI-based debugger. The buttons in the Toolbar
are equivalent to menu selections. There are eight buttons in the toolbar. Listed from left to
right, they are:

• Go from the Run menu
• Step Over from the Run menu
• Trace Into from the Run menu
• Until Return from the Run menu
• Undo from the Undo menu
• Redo from the Undo menu
• Unwind Stack from the Undo menu
• Rewind Stack from the Undo menu
• Home from the Undo menu

See the sections entitled "The Run Menu" on page 61 and "The Undo Menu" on page 63 for
details.

4.4 Dialogs

Figure 2. A Typical Dialog

Dialogs 31

Watcom Debugger Environment

Dialogs appear when you choose a menu item that does not perform an immediate action.
They allow you to make choices and set options. The dialogs contain the following:

Edit fields These are fields in which you can type information.

Buttons You can click on buttons to perform actions.

Default button
The default button in a dialog is highlighted. You can select this button by
pressing ENTER.

Cancel All dialogs contain a cancel button. Choose the Cancel button or press ESC to
leave a dialog without saving or implementing changes you have made to the
dialog.

Check Boxes
Check boxes are used to control settings in the debugger. Click on the field, or
TAB to it and press SPACE to toggle the option between on and off.

Radio Buttons
Radio buttons present a set of mutually exclusive choices. Click on a radio
button to turn it on or press TAB to move to the group of radio buttons and use
the cursor keys to select a radio button. If this does not work, use the accelerator
key to turn on the desired radio button. Only one radio button is on at all times.
When you select a different radio button, the currently selected one is turned off.

List boxes A list box contains a list of applicable items.

Drop-down List boxes
A drop down list box is a list that does not appear on the screen until you click
on the down arrow on the right of the box. You may then select from a list of
options.

4.5 Accelerators
Accelerators are keys that you can press in place of selecting a menu item or typing
commands. The debugger comes with a standard set of accelerators that you can view by
choosing Accelerators from the Window menu.

If you are used to the CodeView debugger, you should be comfortable with the Watcom
Debugger’s default set of accelerators. If you are used to using Turbo Debugger, you can
select accelerators which are similar to its accelerator definitions. To select Turbo

32 Accelerators

The Watcom Debugger Environment

accelerators, choose Accelerator from the Window menu then select TD Keys from the Action
menu.

4.5.1 Default Accelerators

The default accelerators are:

/ Search/Find...
ALT-/ Search/Next
CTRL-\ Search/Next
? add a new expression to the Watch window
F1 invoke help facility
F2 Data/Registers
F3 toggle between source level and assembly level debugging
F4 Window/Application
F5 Run/Go
F6 Window/Next
F8 Run/Trace Into
F9 Break/Toggle
F10 Run/Step Over
SHIFT-F9 add a new item to the Watch window
CTRL-F4 close the current window
CTRL-F5 restore the current window to its normal size
CTRL-F6 rotate the current window
CTRL-F9 minimize the current window
CTRL-F10 maximize the current window
ALT-F10 display the floating pop-up menu for the current window
CTRL-TAB rotate the current window
CTRL-LEFT Undo/Undo
CTRL-RIGHT Undo/Redo
CTRL-UP Undo/Unwind Stack
CTRL-DOWN Undo/Rewind Stack
CTRL-BACKSPACE Undo/Home
ALT-1 Data/Locals
ALT-2 Data/Watches
ALT-3 Code/Source
ALT-4 File/View...
ALT-5 Data/Memory at...
ALT-6 Data/Memory at...
ALT-7 Data/Registers
ALT-8 Data/80x87 FPU

Accelerators 33

Watcom Debugger Environment

ALT-9 File/Command...
CTRL-z Window/Zoom
SPACE Run/Step Over
. display the floating pop-up menu for the current window
: File/Command...
= Search/Match
n Search/Next
N Search/Previous
u Undo/Undo
U Undo/Redo
b Break/At Cursor
e Data/Memory at...
g Run/Execute to...
h move cursor left one
i Run/Trace Into
j move cursor down one
k move cursor up one
l move cursor right one
t Break/Toggle
x Run/Next Sequential

4.5.2 Turbo Emulation Accelerators

The Turbo emulation accelerators are:

F2 Break/Toggle
F3 Code/Modules
F4 Run/Run to Cursor
F5 Window/Zoom
F6 Window/Next
F7 Run/Trace Into
F8 Run/Step Over
F9 Run/Go
ALT-F2 Break/New...
ALT-F3 close the current window
ALT-F4 Undo/Undo
ALT-F5 Window/Application
ALT-F7 trace one assembly instruction
ALT-F8 Run/Until Return
ALT-F9 Run/Execute to...
ALT-F10 activate the pop-up menu for the current window

34 Accelerators

The Watcom Debugger Environment

CTRL-F2 Run/Restart
CTRL-F4 open a new Watch window
CTRL-F7 add a new item to the Watch window

4.6 The File Menu
The File menu contains items that allow you to perform file operations, such as:

Open Start debugging a new program, or to restart the current program with new
arguments.

View Display a file in a window.

Command Enter a debugger command. For a description of debugger commands, refer to
the section entitled "Debugger Commands" on page 175.

Options Set the global debugging options. For a full description of these options, refer to
the section entitled "The Options Dialog" on page 36.

Window Options
Set the options for the debugger’s various windows. For a full description of
these options, refer to the section entitled "The Window Options Dialog" on
page 38.

Save Setup Save the debugger’s current configuration. This saves the positions and sizes of
all windows as well as all options and settings. By default, this information is
saved into the file SETUP.DBG, however, you can save this information into
another file to create alternate debugger configurations.

Load Setup Load a configuration previously saved using Save Setup.

Source Path Modify the list of directories which will be searched when the debugger is
searching for source files.

System The menu item appears only in the character-based version of the debugger. It
spawns a new operating system shell.

Exit Close the debugger.

The File Menu 35

Watcom Debugger Environment

4.6.1 The Options Dialog

Figure 3. The Options Dialog

The Options dialog allows you to change the following settings:

Auto configuration save When this option is on, the debugger automatically saves its
configuration upon exit.

Warning Bell When this option is on, the debugger will beep when a warning or error is
issued.

Implicit Invoke If this option is on, the debugger will treat an unknown command as the name
of a command file and automatically try to invoke it. If this option is off, you
must use the invoke command to invoke a command file.

36 The File Menu

The Watcom Debugger Environment

Under QNX, a conflict is possible when Invoke is on. A path specified for a
command file name is confused with the short form of the DO command (/). A
similar problem occurs under DOS, OS/2, Windows 3.x, Windows NT, or
Windows 95 when a drive specifier forms part of the file name.

Recursion Check Use this option to control the way tracing over recursive function calls is
handled. When this option is on, and you trace over a function call, the
debugger will not stop if the function executes recursively.

Screen flip on execution Use this option to control whether the debugger automatically flips
the display to the application’s screen upon execution. Leave this option on if
you are using the character mode debugger to debug a Windows 3.x
application.

Ignore case This option controls whether or not case is ignored or respected when the
debugger is searching for a string.

Default Radix Use this option to define the default radix used by the debugger. The debugger
associates a radix with each action automatically. For example, if you are asked
to enter an address, the debugger assumes base 16. If you double click on a
decimal value, you will be prompted for a decimal replacement value but there
are occasions when the debugger must use the default radix. If you add an
arbitrary expression to the Watches window, the default radix is used when
interpreting that expression. You can specify any radix between 2 and 36.

Double click mS This option sets the amount of time in milliseconds allowed between two
clicks for the debugger to accept it as a double click. Enter a larger value if you
are having trouble with double clicks.

The File Menu 37

Watcom Debugger Environment

4.6.2 The Window Options Dialog

Figure 4. The Window Options Dialog

Use the Window Options dialog to define options related to the debugger’s various windows.
All of these options appear in a dialog when you choose Window Options from the File menu.

The Window Options dialog allows you to set options for the following windows:

• Source
• Modules
• Functions
• Assembly
• Watches
• Locals
• File Variables
• Globals
• Variable

38 The File Menu

The Watcom Debugger Environment

4.6.2.1 The Assembly Options

The Assembly options allow you to define how your assembly code appears. You can set the
following options:

Show Source
Turn on this option if you want source code intermixed with assembly code.

Hexadecimal
Turn on this option if you want immediate operands and values to be displayed
in hexadecimal.

4.6.2.2 The Variables Options

Use the Variable options to set display options and to specify which members of a class you
want displayed when a structure or class is expanded. You can set:

Protected Display protected members in expanded classes.

Private Display private members in expanded classes.

Whole Expression
Turn this option on to show the whole expression used to access fields and array
elements instead of just the element number or field name itself.

Functions Display C++ member functions in expanded classes.

Inherited Display inherited members in expanded classes.

Compiler Display the compiler-generated members. You will usually not want this option
turned on.

Members Display members of the ’this’ pointer as if they were local variables declared
within the member function.

Static Display static members.

4.6.2.3 The File Options

You can set the display width of a tab in the File options section. This value defaults to 8
spaces.

The File Menu 39

Watcom Debugger Environment

4.6.2.4 The Functions and Globals Options

For both Functions and Global Variables windows, you can turn on the Typed Symbols
option. This restricts the list of symbols to those that are defined in modules compiled with
full debugging information (d2 option).

4.6.2.5 The Modules Options

You can turn on Show All to allow the Modules window to display all modules in your
program, not just those which have been compiled with the d2 option.

4.7 The Code Menu
The Code menu allows you to display windows that show different information related to
your code. It contains the following items:

Source Open the Source window. It shows source code at the currently executing
location. See "The Source Window" on page 51.

Modules Display a sorted list of modules contained in the current program. See "The
Modules Window" on page 53.

Functions Open a sorted list of all functions in the program. See "The Functions Window"
on page 56.

Calls Open the Call History window. This window displays the program’s call stack.
See "The Calls Window" on page 66.

Assembly Open the Assembly window. It shows assembly code at the currently executing
location. See "The Assembly Window" on page 98.

Threads Open a list of all threads in your program and their current state. See "The
Thread Window" on page 67.

Images Open a list of the executable images which are related to the program being
debugged. This includes a list of all loaded DLLs. See "The Images Window"
on page 57.

Replay Open the program execution Replay window. This window allows you to restart
your application and replay your debugging session to any point. See "The
Replay Window" on page 65.

40 The Code Menu

The Watcom Debugger Environment

4.8 The Data Menu
The Data menu contains a number of windows that you can open to view the state of your
program’s data. It contains the following items:

Watches Open a Watches window. You can add and delete variables from the Watches
window and use it to evaluate complex expressions and perform typecasting.
See "Variable and Watch Windows" on page 71.

Locals Open a Locals window. It displays the local variables of the currently executing
function. See "Variable and Watch Windows" on page 71.

File Variables
Open a File Variables window. It contains a list of variables defined at file
scope in the current module. See "Variable and Watch Windows" on page 71.

Globals Open a sorted sorted list of all global variables in your program. Values are not
displayed since it would make this window very expensive to update, but you
can select variables from this window and add them to a Watches window. See
"The Globals Window" on page 55.

Registers Displays the CPU registers and their values. See "The CPU Register Window"
on page 97.

FPU Registers
Displays the FPU registers and their values. See "The FPU Registers Window"
on page 101.

MMX Registers
Displays the MMX (multi-media extension) registers and their values. See "The
MMX Registers Window" on page 102.

Stack Displays memory at the stack pointer. See "The Memory and Stack Windows"
on page 77.

I/O Ports Open a window that lets you manipulate the I/O address space of the machine.
See "The I/O Ports Window" on page 100.

Memory at...
Display memory at a given address. See "The Memory and Stack Windows" on
page 77.

The Data Menu 41

Watcom Debugger Environment

Log Displays debugger messages and the output from debugger commands. See
"The Log Window" on page 44.

4.9 The Window Menu
The Window menu allows you to control and arrange the windows on your screen.

The Window menu contains the following items:

Application Switch to the output screen of the application. Press any key to return to the
debugger.

To Log Save the current window’s contents to the log window. Open the Log window
to see the contents.

To File Save the contents of the current window to a file. You must enter a file name
and choose the drive and directory to which you want to save the information.
This is useful for comparing program state between debugging sessions.

Zoom Change the size of the current window. Zoom toggles the current window
between its normal and maximum sizes.

Next Rotate through the windows, choosing a new current window.

Accelerator Open the Accelerator window. This window allows you to inspect and modify
the debugger’s keyboard shortcut keys.

4.10 The Action Menu
Most windows in the debugger have a context sensitive pop-up menu. The Action menu will
contain the same menu items as the current window’s pop-up menu. It may be used as an
alternative to the pop-up menus. As an alternative to selecting text with the right mouse
button and using the pop-up menu, you can select text with the left mouse button or keyboard
and use the Action menu. For more information on the choices presented in the pop-up
menus, see the section entitled "Variable and Watch Windows" on page 71.

42 The Action Menu

The Watcom Debugger Environment

4.11 The Help Menu
The Help menu contains items that let you use the on-line help facility. They are:

Contents Show the main table of contents of the on-line help information. This is
equivalent to pressing F1.

On Help Display help about how to use the on-line help facility. This menu item is not
available in character-mode versions of the debugger.

Search Search the on-line help for a topic. This menu item is not available in
character-mode versions of the debugger.

About Display the "about box". It contains the copyright and version information of
the debugger.

4.12 The Status Window
The Status window appears at the bottom of the debugger screen. As you drag the mouse over
a menu item, descriptive text about that menu item appears in the toolbar. Messages about the
current status of the program and debugger warning messages also appear in the Status
window.

The Log Window 43

Watcom Debugger Environment

4.13 The Log Window

Figure 5. The Log Window

Choose Log from the Data menu to see the Log window. The Log window displays several
different types of messages, including:

• status messages such as break point notification
• warning and error messages
• output from debugger commands

You can send the contents of any window to the Log window by selecting To Log from the
Window menu. This allows you to save a window’s contents and review it later.

44 The Log Window

The Watcom Debugger Environment

4.14 The Accelerator Window

Figure 6. The Accelerator Window

The Accelerator window allows you to control the accelerators or keyboard equivalents used
by the debugger. Choose Accelerator from the Window menu to open this window. The
window displays 4 items relating to each accelerator definition. They are the key name, the
window to which the accelerator applies, the type of action that the accelerator defines, and
the specifics of that action.

Accelerators may either apply to all windows or to a specific window. You could define F2 to
perform a different action depending upon which window is current. Accelerators which
apply to all windows will have a window type of all.

An accelerator can define one of three action types. They are:

The Accelerator Window 45

Watcom Debugger Environment

pop-up Activate a pop-up menu item in the current window.

menu Activate an item from the main menu.

command Perform an arbitrary debugger command.

You can modify an element of an accelerator definition by double-clicking on it, or by
cursoring to it and pressing ENTER. Press the right mouse button to access the following
menu items:

Modify Change the currently selected element of an accelerator assignment. If the key
name is selected, the you will be prompted to type a new key. If the window
name is selected, you will be presented with a list of possible window classes. If
the action type or details are selected, you will be presented with a menu in order
to pick the menu item which will be attached to the accelerator.

New Add a new accelerator assignment. You will be prompted for all details.

Delete Delete the selected accelerator.

TD Keys Use an approximation of Borland Turbo Debugger’s accelerators.

WD Keys Use the default set of accelerators. If you are familiar with CodeView, you will
be comfortable with these key assignments.

46 The Accelerator Window

Navigating Through a Program

Navigating Through a Program

48

5 Navigating Through a Program

This section describes how to use the debugger to browse through your program.

5.1 The Search Menu
The Search menu allows you to search a window for a given string. It contains the following
items:

Find Search the current window for the first appearance of a given string. You will
be prompted for the string. See "Entering Search Strings" on page 50.

Next Find a subsequent occurrence of a search string.

Previous Find a previous occurrence of a search string.

All Modules This will search through the source code of all the modules contained in your
program for a given string. See "Entering Search Strings" on page 50.

Match Find a string in a sorted window by incremental matching. Once you select
match, the text you type appears in the status window, and the window you are
searching repositions itself as you type each character. Press ESC to leave this
mode.

The Search Menu 49

Navigating Through a Program

5.1.1 Entering Search Strings

Figure 7. Entering a search string

When you choose Find from the Search menu or All Modules from the Search menu, you
must enter the search string that you are looking for and set the parameters for the search. The
Search screen consists of the following items:

Enter Search String
Enter the string to be found in this edit box. The larger list below shows other
strings that you have searched for during this debugging session. You can select
these by clicking on them or by using the up and down arrow keys. The most
recent search string appears at the top of the list.

Regular Expression
Check this box if the string is to be interpreted as a regular expression. You can
click on the Edit button to edit the set of regular expression characters that will
be used. For a description of regular expressions, see the Editor manual.

Ignore Case Check this box if you want the debugger to match the search string regardless of
case.

50 The Search Menu

Navigating Through a Program

5.2 The Source Window

Figure 8. The Source Window

The Source window displays your program’s source code. As you trace through your
program, it repositions itself at the currently execution location. If you have an Assembly
window open, the Source and Assembly windows will always be positioned at the same code.
If you scroll in one, the other follows.

Source lines that have code associated with them have a button at the left of the screen. You
can click on this button to set, disable and clear break points.

You can Inspect any item displayed in the source window by double-clicking on it, or by
cursoring to it and pressing ENTER. Press the right mouse button to access the following
pop-up menu items:

The Source Window 51

Navigating Through a Program

Inspect Inspect the selected item in an appropriate window. You can select function
names, variable names, or any valid expression.

Run to Cursor
Resume program execution until the selected line is executed.

Break Add a breakpoint based on the selected text. If a variable is selected, the
program will stop when its value changes. If a function name is selected the
program will stop when that function is executed. This does not set a break at
the current line. Use Toggle from the Break menu or At Cursor from the
Break menu to set a breakpoint at the current line.

Enter Function
Resume program execution until the selected function is entered.

Watch Add the selected item to the Watches window for further inspection or
modification.

Find Search for other occurrences of the selected string in the Source window.

Home Reposition the window to show the currently executing location. The cursor
will move to the next line of the program to be executed.

Show/Assembly
Show the assembly code associated with the selected line.

Show/Functions
Show the list of all functions contained in the source file.

Show/Address
Reposition the window at a new address. You will be prompted for an
expression. Normally you would type a function name but you can type any
expression that resolves to a code address. For example, you might type the
name of a variable that contains a pointer to a function. See "Watcom Debugger
Expression Handling" on page 141.

Show/Module
Show the code for a different module. You will be prompted for its name in a
dialog. As a shortcut, you can type the beginning of a module name and click
the Module... button. This will display a list of all modules that start with the
text you typed.

Show/Line Move to a different source line. You can also find out what line you are looking
at. The edit field will be initialized with the current line number.

52 The Source Window

Navigating Through a Program

5.3 The File Window
A File window is Similar to a source window except that it displays a file which is not part of
the program being debugged. Menu items related to execution such as Break from the pop-up
menu are not available.

5.4 The Modules Window

Figure 9. The Modules Window

The Modules window displays a list of the modules that make up the current program. To
open the Modules window, choose Modules from the Code menu.

Three items are displayed for each module. At the left, there is a button. You can click the
mouse on it to see the source or assembly associated with the module. This can also be
accomplished by double-clicking on the module name or cursoring to it and pressing ENTER.
Next is the module name. Third, if the module is contained in an executable image other than
the one being debugged, is the name of that image.

The Modules Window 53

Navigating Through a Program

Since this window is sorted Match from the Search menu can be used to find a module.
Choose Match from the Search menu (or press =) and begin typing the name of the module.

Press the right mouse button to access the following pop-up menu items:

Source Show the source code associated with the selected module.

Assembly Show the assembly code associated with the selected module.

Functions Show the list of all functions contained in this module.

Break All Set a breakpoint at each function in this module.

Clear All Delete all breakpoints which are set at addresses with this module. This does not
affect break-on-write break points.

Show All Toggle between showing all modules and just modules which were compiled
with full debugging information (d2). This menu item sets options on a
per-window basis, overriding the global settings. When you use the menu item
to change these settings, they will not be saved between debugging sessions. To
change an option permanently, see "The Window Options Dialog" on page 38.

54 The Globals Window

Navigating Through a Program

5.5 The Globals Window

Figure 10. The Globals Window

You can open the Globals window by choosing Globals from the Data menu. This window
displays the names of all global variables defined in the program. You can add a variable to
the Watches window by double-clicking on it, or cursoring to it and pressing ENTER.

Press the right mouse button to access the following pop-up menu items:

Watch Add the selected variable to the Watches window.

Raw Memory
Display the memory associated with the selected variable.

Typed Symbols
Toggle between showing all symbols and just those defined in modules
compiled with the d2 option. Variables from the C/C++ library and assembly
code are suppressed. This menu item sets options on a per-window basis,
overriding the global settings. When you use the menu item to change these

The Globals Window 55

Navigating Through a Program

settings, they will not be saved between debugging sessions. To change an
option permanently, see "The Window Options Dialog" on page 38.

5.6 The Functions Window

Figure 11. The Functions Window

The Functions window can display a list of all functions contained in a module, executable
image or program. To the left of each function name is a button. You can click on these
buttons to set and clear breakpoints at the various functions. This can also be accomplished
by double-clicking on the function name or cursoring to a function and pressing ENTER.

Press the right mouse button to access the following pop-up menu items:

Break Set a breakpoint at the selected function. A dialog will appear so that you can
fill in detailed breakpoint information. For more information, refer to the
section entitled "The Breakpoint Dialog" on page 90.

Source Show the source code for the selected function.

56 The Functions Window

Navigating Through a Program

Assembly Show the assembly code associated with the selected function.

Typed Symbols
Toggle between showing all symbols and just those defined in modules
compiled with the d2 option. Variables from the C/C++ library and assembly
code are suppressed. This menu item sets options on a per-window basis,
overriding the global settings. When you use the menu item to change these
settings, they will not be saved between debugging sessions. To change an
option permanently, see "The Window Options Dialog" on page 38.

5.7 The Images Window

Figure 12. The Images Window

Choose Images from the Code menu to open the Images window. It displays a list of
executable images associated with the program that you are currently debugging. Executable
images include the program executable, DLLs (Windows, OS/2 and Windows NT), and
NLMs (NetWare). This window displays the name of the executable image, the name of the
symbolic debugging information file (if available), and the debugging information type.

The Images Window 57

Navigating Through a Program

Different debugging information types are generated by different compilers.

Valid information types are:

WATCOM This information is generated by the WATCOM compilers.

DWARF This information is optionally generated by the WATCOM compilers.

CodeView Several other compilers, including Microsoft, generate CodeView style
information.

EXPORTS This information is contained in the executable file itself, and is used by the
operating system. Under OS/2, Windows and Windows NT, DLLs have export
tables which define the names and addresses of entry points. Exports
information lets you see the names of system entry points and APIs. Novell
NLMs also have entry point tables. In addition, they may have Novell style
debugging information, created with Novell’s linker (NLMLINK) or using the
WATCOM Linker’s "debug novell" option. This information is made available
to the debugger.

You can add new debugging information to an image by double-clicking on the image name
or cursoring to it and pressing ENTER.

Press the right mouse button to access the following pop-up menu items:

New Symbols
Add symbolic debugging information for the selected image. This is useful if
you know that a separate debug information file contains the appropriate
debugging information that was not found by the debugger.

Delete Symbols
Delete any symbolic debugging information associated with the selected image.

Modules Show a list of modules contained in the selected image.

Functions Show a list of functions contained in the selected image.

Globals Show a list of all global variables contained in the selected image.

58 The Images Window

Controlling Program Execution

Controlling Program Execution

60

6 Controlling Program Execution

This section describes how you can control the execution of your program as you debug it.

6.1 The Run Menu
The Run menu controls how your program executes. It contains the following items.

Go Start or resume program execution. Execution resumes at the current location
and will not stop until a breakpoint is encountered, an error occurs, or your
program terminates.

Run to Cursor
Resume program execution until it executes the location of the cursor in the
Source or Assembly window. Execution will stop before the cursor position if a
breakpoint is encountered or an error occurs.

Execute to Resume program execution until it executes a specified address. You will be
prompted to enter an address. It can be the name of a function or an expression
that resolves to a code address. See "Watcom Debugger Expression Handling"
on page 141. In the dialog, you can click the Symbols... button as a shortcut.
You can type a partial symbol name like foo and the Symbol button will show
you a list of symbols that start with foo. You can then choose one of these
symbols by clicking on it or hitting ENTER. Note that the first time you use the
Symbols... in a debugging session, it will take a while as the debugger sorts the
symbol table for the program.

If your program encounters a breakpoint or an error occurs before the specified
address is executed, your request to stop at the given address is ignored.

Step Over Trace a single source or assembly line depending on whether the source or
assembly window is current. Step Over will not step into any function calls.

Trace Into This is similar to Step Over except that it will step into any function calls.

Next Sequential
Run until the program executes the next sequential source line or assembly

The Run Menu 61

Controlling Program Execution

instruction. This is useful if the program is executing the last statement in a loop
and you wish to execute until the loop terminates. When using this command,
be sure that the execution path will eventually execute the next statement or
instruction. If execution fails to reach this point then the program may continue
to execute until completion. This situation is like setting a breakpoint at a
statement or assembly instruction which will never be executed and then issuing
a GO command. In this situation, the application would execute until an error
occurred or another breakpoint was encountered.

Until Return
Resume program execution until the currently executing function returns.
Execution terminates prior to this if an error occurs or a breakpoint is
encountered.

Skip to Cursor
Reposition the instruction pointer at the cursor position, "skipping" all
instructions in between. When you continue execution, the program continues
from this point. This is useful if you want to skip an offending line or re-execute
something. Use this menu item with caution. If you skip to an instruction
which is not in the current function or skip to code that expects a different
program state, your program could crash.

Restart Restart your program from the beginning. All breakpoints in your program will
be preserved. Breakpoints in DLLs will not be preserved.

Debug Startup
Restart your program from the beginning but stop before system initialization.
Normally the debugger puts you at the main (fmain, winmain, etc.) entry point in
your application. This option will allow you to break much earlier in the
initialization process. This feature is useful for debugging run-time startup code,
initializers, and constructors for static C++ objects.

For DOS, Windows 3.x and Netware, the debugger will put you at the assembly
entry point of your application (i.e., it doesn’t run the "progstart" hook).

Windows 3.x runs each DLL’s startup code as it loads it, and the static DLLs are
really loaded by the run-time startup code, so, to debug the startup code for a
statically linked Windows 3.x DLL, you need to do the following.

1. Select Debug Startup from the Run menu.

2. Select On Image Load from the Break menu. Type the name of the
DLL in which you are interested.

62 The Run Menu

Controlling Program Execution

3. Select Go from the Run menu

For OS/2 and Windows NT, the debugger will put you at a point after all DLLs
have been loaded, but before any DLL initialization routines are called. This
enables you to set breakpoints in your statically referenced DLL’s startup code.

If you have hard-coded int3 instructions in your DLL startup, the debugger will
skip them, unless you use Debug Startup from the Run menu.

All breakpoints in your program will be preserved. Breakpoints in DLLs will
not be preserved.

Save Save the current debugging session to a file. The file contains commands that
will allow the debugger to play your debugging session back to its current point
in a later session. See "The Replay Window" on page 65.

Restore Restore a saved debugging session. If you run the program with different input
or if the program is a multi-threaded application, this option may not work
properly since external factors may have affected program execution. See "The
Replay Window" on page 65.

6.2 The Undo Menu
The debugger keeps an execution history as you debug your program. This history is
accessible using the Undo menu. The effect of program statements as you single step through
your program are recorded. All interactions that allow you to modify the state of your
program including modifying variable values, changing memory and registers are also
recorded. Undo and Redo let you browse backward and forward through this execution
history. As you use these menu items, all recorded effects are undone or redone, and each of
the debugger’s windows are updated accordingly.

You can resume program execution at any previous point in the history. The program history
has no size restrictions aside from the amount of memory available to the debugger, so
theoretically you could single step through your entire program and then execute it in reverse.
There are several practical problems that get in the way of this. When you single step over a
call or interrupt instruction, or let the program run normally, the debugger has no way of
knowing what kind of side effects occurred. No attempt is made to discover and record these
side effects, but the fact that you did step over a call is recorded. If you try to resume program
execution from a point prior to a side effect, the debugger will give you a the option to
continue or back out of the operation. Use caution if you choose to continue. If an important
side effect is duplicated, you program could crash. Of course reversing execution over
functions with no side effects is harmless, and can be a useful debugging technique. If you

The Undo Menu 63

Controlling Program Execution

have accidentally stepped over a call that does have a side effect, you can use Replay to
restore your program state.

Unwind and Rewind move the debugger’s state up and down the call stack. Like Undo, all
windows are updated as you browse up and down the stack, and you can resume execution
from a point up the call stack. A warning will be issued if you try resuming from a point up
the call stack since the debugger cannot completely undo the effects of the call.

Unwind is particularly useful when your program crashes in a routine that does not contain
debugging information. strcpy() is a good example of this. You can use Unwind to find the
call site and inspect the parameters that caused the problem.

The runtime library detects certain classes of errors and diagnoses them as fatal runtime
errors. If this occurs when you are debugging, the debugger will be activated and the error
message will be displayed. For example, throwing an exception in C++ without having a
catch in place is a fatal runtime error. In C, the abort() and assert() functions are fatal errors.
When this happens, you will be positioned in an internal C library call. You can use Unwind
to find the point in your source code that initiated the error condition.

When Unwind and Undo are used in conjunction, Undo is the primary operation and Unwind
is secondary. You can Undo to a previous point in the history and then Unwind the stack. If
you Unwind the stack first and then use Undo, the Unwind has no effect.

If you modify the machine state in any way when you are browsing backward through the
execution history, all forward information from that point is discarded. If you have browsed
backward over a side effect the debugger will give you the option of canceling any such
operation.

The Undo menu contains the following items.

Undo Browse backwards through the program execution history.

Redo Browse forward through the program execution history.

Unwind Stack
Move up the call stack one level.

Rewind Stack
Move down the call stack one level.

Home Return to the currently executing location, reversing the effects of all Undo and
Unwind operations.

64 The Undo Menu

Controlling Program Execution

6.3 The Replay Window

Figure 13. The Replay Window

Choose Replay from the Code menu to open the Replay window. This window displays each
of the steps that you have performed during this debugging session that might have affected
program flow. There are three items displayed in the replay window. First is the address the
program was executing when you took some action that could affect the program. These
actions include setting break points, tracing and modifying memory. Second is the source or
assembly code found at that address. Third is a command in the debugger’s command
language that will duplicate the action you took. The most common use for Replay is when
you accidentally step over a function call, or the program unexpectedly runs to completion. If
this happens, you can open the replay window, and replay you debugging session up to any
point prior to the last action you took.

There are special cases where replay will not perform as expected. Since replay is essentially
the same as playing your keystrokes and mouse interactions back to the debugger, your
program must behave identically on a subsequent run. Any keyboard or mouse interaction
that your program expects must be entered the same way. If your program expects an input
file, you must run it on the same data set. Your program should not behave randomly or
handle asynchronous events. Finally, your program should not be multi-threaded. If you have

The Replay Window 65

Controlling Program Execution

just been tracing one thread, your program will replay correctly, but multiple threads may not
be scheduled the same way on a subsequent run.

You can replay program execution to any point by double clicking on that line or by cursoring
to it and pressing ENTER. Select any line and press the right mouse button to see the
following pop-up menu items:

Goto Replay the program until it returns to the selected level in the replay history.

Source Position the source window at the selected line.

Assembly Show the assembly code for the selected line.

6.4 The Calls Window

Figure 14. The Calls Window

Choose Calls from the Code menu menu to display the Calls window. This window displays
the program’s call stack. Each line contains the name of the function that was executing, and

66 The Calls Window

Controlling Program Execution

the source or assembly code at the call site. You can use Unwind and Rewind to obtain this
information, but the calls windows will show you the entire call stack.

You can Unwind to any point in the call stack by double-clicking on a line, or by cursoring to
it and pressing ENTER. Select a line and press the right mouse button to access the following
pop-up menu items:

Unwind Unwind the stack to the level of the selected code. This is equivalent to using
Unwind from the Undo menu or Rewind from the Undo menu.

Break Set a breakpoint at the return from the selected call.

Goto Execute until the program returns from the selected call.

6.5 The Thread Window

Figure 15. The Thread Window

Choose Thread from the Code menu to display Thread window. This window displays the
system ID of each thread, the state of the thread, and under some operating systems, system
specific information about the thread including its name and scheduling priority. The state of
each thread can be:

The Thread Window 67

Controlling Program Execution

current This is the thread that was running when the debugger was entered. It is the
thread that hit a break point or error. When you trace through the application,
only the current thread is allowed to run.

runnable This thread will be allowed to run whenever you let your program run, but will
not run when you trace the program.

frozen This thread will not be allowed to run when you resume your program.

dead Under some operating systems, threads that have been terminated still show up
in the list of threads. A dead thread will never execute again.

You can make any thread current by double clicking on it or cursoring to it and pressing
ENTER. All other debugger windows update accordingly. Press the right mouse button to
access the following pop-up menu items:

Switch to Make the selected thread current.

Freeze Change the state of the selected thread to be frozen. You cannot freeze the
current thread.

Thaw Change the state of the selected thread to be runnable.. The current thread is
always runnable.

68 The Thread Window

Examining and Modifying the
Program State

Examining and Modifying the Program State

70

7 Examining and Modifying the Program
State

The following topics are discussed:

• "Variable and Watch Windows"

• "The Memory and Stack Windows" on page 77

7.1 Variable and Watch Windows

Figure 16. The Watch and Variable Window

Windows that display variables come in several different varieties. They are:

Variable and Watch Windows 71

Examining and Modifying the Program State

• Locals
• File Variables
• Watches
• Variable

They are collectively called variable windows. You use the same interactions in all variable
windows to display, modify and browse your variables and data structures. The only
difference between these windows are the variables that they display. The values in each
window are updated as you trace through your program. The windows display the following
information:

Locals Contains the list of variables which are local to the current routine. Choose
Locals from the Data menu to open this window.

File Variables Contains a list of all variables which are defined at file scope in the current
module. This includes external and static symbols. Choose File Variables from
the Data menu to open this window.

Watches The Watches windows allows you to add and delete variables and expressions.
In other windows you can choose Watch from the pop-up menu. This will open
the watches window add the text which is selected in another window to the
watches window. You can use New from the pop-up menu to add any
expression to the Watches window. Once entered, you can choose Edit from the
pop-up menu to edit the expressions or typecast the variables.

Variable This is another instance of a Watches window. A variable window is created
when you select a variable or expression in a window and use Inspect from the
pop-up menu.

Each line of a variable window has three elements. On the left is a button. The button
changes depending on the type of the variable or expression. it changes based on the type of
the item:

structs (classes) (unions) Structures may be opened and closed by clicking on the button at
the left. When you open a structure or class, one line is added to the window for
each field of the structure. These new lines are indented. If you click on the
button again, the structure is closed and the window is returned to its original
state.

arrays Like structs, arrays may be opened and closed. When you open an array, one
line is added to the window for each element of the array. The debugger will
display at most 1000 elements of an array. If it contains more you can use
Type/Array... to open different ranges. Multi dimensional arrays are treated like

72 Variable and Watch Windows

Examining and Modifying the Program State

an array of arrays. When you open the first dimension, the lines that are added
will also be arrays which you can open.

pointers When the variable is a pointer, you can click on the button and the debugger will
follow the pointer and change the line to represent the item which is the result of
the pointer reference. For example, if you have a pointer to an integer and click
on the button, the integer value will be displayed. The button then changes to
indicate so that you can undo the operation by clicking on it again.

In the case of pointers to pointers, clicking on the button will follow the pointers
one level each time you click on the button until a non-pointer value is reached.
Clicking on the button at this point will undo take you back to the original state.
When the pointer points to a struct, the structure will automatically be opened
when you click on the button. If a pointer is really an array, you can use
Type/Array... from the pop-up menu to open it as an array.

Next comes the name of the variable, field or array element being displayed. Finally, the
value is displayed. If the item being displayed is not a scalar item, the value displayed is an
indication that it is a complex data type. If the value changes when you run your program, it
will be highlighted. If a variable goes out of scope, or a pointer value becomes invalid, the
value will be displayed as question marks.

You can modify a variable’s value by double clicking on the value field, or by cursoring to it
and pressing enter. Double clicking or pressing enter on the name field is equivalent to
clicking on the button. Press the right mouse button to access the following pop-up menu
items:

Modify... Modify the value of the selected item.

Break Set a breakpoint so that execution stops when the selected item’s value changes.
This is the same as setting a breakpoint on the object. See "Breakpoints" on
page 85.

Inspect Open a new Variable window containing the selected item. If the item is a
compound object (array, class, or structure), it will be opened automatically.

Watch Add the selected item to the Watch window.

Show/Raw Memory
Display raw memory at the address of this variable. This lets you examine the
actual binary representation of a variable.

Variable and Watch Windows 73

Examining and Modifying the Program State

Show/Pointer Memory
Display the memory that the item points to. This is useful when you have a
pointer to a block of memory that does not have a type associated with it.

Show/Pointer Code
Display the code that the variable points to. If the item being displayed is a
pointer to function, you can use this menu item to see the definition of that
function.

Show/Type Display the type of the variable in an information message box. Select "OK" to
dismiss the information box and resume debugging.

Edit Open a dialog box in which you can edit an expression in the Watch window.
This is useful for typecasting variables or evaluating expressions. See "Watcom
Debugger Expression Handling" on page 141.

New Add a new variable or expression to the window. You will be prompted for the
expression to add.

Delete Delete the selected item from the window.

FieldOnTop Display the value of this member at the top of the structure/class. You can
selectively add or remove items from the list that is displayed "on top". For
example, say you have a struct Point displayed as:

[-] point

x 10
y 30
other "asdf"

If you toggle FieldOnTop for both x and y then point would be displayed like
this:

[-] point { 10, 30 }

x 10
y 30
other "asdf"

Furthermore, if you closed the struct (or pointer to struct) then you would see:

[+] point { 10, 30 }

74 Variable and Watch Windows

Examining and Modifying the Program State

This carries to structs containing structs (and so on) as shown in the following
struct containing two Point structures.

[-] rect { { 10, 10 }, { 30, 30 } }

top left { 10, 10 }
bot right { 30, 30 }

If you close it, then you will see:

[+] rect { { 10, 10 }, { 30, 30 } }

Class/Show Functions
Display function members of this object. If this option is not selected, no
functions are displayed. This option works in conjunction with other Class
selections to display "Inherited", "Generated", "Private" and "Protected"
functions.

Class/Show Inherited
Display inherited members of this object. To see inherited functions, you must
also select Class/Show Functions.

Class/Show Generated
Display compiled-generated members of this object. To see generated functions,
you must also select Class/Show Functions.

Class/Show Private
Display private members of this object. To see private functions, you must also
select Class/Show Functions.

Class/Show Protected
Display protected members of this object. To see protected functions, you must
also select Class/Show Functions.

Class/Show Static
Display static members of this object.

Type/Hex Change the value to be displayed in hexadecimal.

Type/Decimal
Change the value to be displayed in decimal.

Type/Character
Change the value to be displayed as a single character constant. This useful

Variable and Watch Windows 75

Examining and Modifying the Program State

when you have a one byte variable that really contains a character. The
debugger will often display it as an integer by default.

Type/String The debugger automatically detects pointers to strings in the variable windows
and displays the string rather than the raw pointer value. In the string is not null
terminated, contains non-printable characters, or is not typed as a pointer to
’char’, this mechanism will not work. Type/String overrides the automatic
string detecting and displays the pointer as a string regardless of its type.

Type/Pointer
This will undo the effects of Type/String or Type/Array. It will also let you see
the raw pointer value when the debugger has automatically displayed a pointer
to char as a string.

Type/Array...
Use this menu item to display a pointer as if it were an array, or to display
ranges of an array’s elements. You will be prompted for the first and last
element to display.

Options/Whole Expression
Select this option to show the whole expression used to access fields and array
elements instead of just the element number or field name itself.

Options/Expand ’this’
Do not display members of the ’this’ pointer as if they were local variables
declared within the member function.

76 The Memory and Stack Windows

Examining and Modifying the Program State

7.2 The Memory and Stack Windows

Figure 17. The Memory Window

Use the Memory window or the Stack window to examine memory in raw form. To open a
Memory window, choose Memory At from the Data menu. The Enter Memory Address
dialog appears. Enter the memory address and press Return to see the Memory window. You
can also use one of the Show/Pointer Memory or Show/Raw Memory items in a variable
window to display the memory associated with a variable.

The Stack Window always shows the memory at the stack pointer. It is moved as your
program executes to track the top of the stack. The stack pointer location will be at the top of
the window. The location of the BP or EBP register will also be indicated. Choose Stack
from the Data menu to open the Stack window.

You can modify memory by double-clicking on a value in the Memory or Stack window, or
by cursoring to it and pressing enter. You will be prompted for a new value.

Memory windows allow you to follow data structures in the absence of debugging
information. The Follow menu items will reposition the memory window to the address that
is found under the cursor. The Repeat and Previous items will let you repeat a follow action.

The Memory and Stack Windows 77

Examining and Modifying the Program State

This makes it simple to follow linked lists. Press the right mouse button to access the
following pop-up menu items:

Modify Modify the value at the selected address. You will be prompted for a new value.
You should enter the value in the same radix as the window is currently
displaying. You are not limited to typing constants values. You can enter an
arbitrary expression to be used for the new value.

Break on Write
Set a breakpoint to stop execution when the selected value changes. See
"Breakpoints" on page 85.

Near Follow
Displays the memory that the selected memory points to, treating it as a near
pointer. The new offset to be displayed will be xxxx where xxxx is the word
under the cursor. DGROUP will be used as the segment if it can be located.
The program’s initial stack segment will be used otherwise. When you are
debugging a 16-bit or 32-bit application, the appropriate word size is used.

Far Follow Displays the memory that the selected memory points to, treating it as a far
pointer. The new address to be displayed will be the the segment and offset
found at the cursor location. Note that pointers are stored in memory with the
offset value first and the segment value second.

Segment Follow
Display the segment that the selected memory points to, treating it as a segment
selector. The new address to be displayed will be xxxx:0 where xxxx is the two
byte word under the cursor.

Cursor Follow
Make the selected position the new starting address in the window. This means
that the first byte in the memory window will become the byte that the cursor
was pointing to. This is useful for navigating through an array when no
debugging information is available.

Repeat Repeat the previous Follow operation. The new address that will be used is at
the same offset relative to the beginning of the window as it was in the original
Follow operation. Repeating a pointer or segment follow is a linked list
traversal. Repeating a Cursor Follow operation advances to the next element in
an array.

78 The Memory and Stack Windows

Examining and Modifying the Program State

Previous Back out of a Follow or Repeat operation. This will display the memory
window you were previously viewing. Essentially, this undoes a Follow
operation. You can back all the way out to the first memory location you were
examining.

Home Undo all Follow and Repeat operations. This will take you back to the very first
location window you were examining. It is equivalent to using Previous
repeatedly.

Left Scroll the window backward through memory by the size of the displayed
memory items.

Right Scroll the window forward through memory by the size of the displayed memory
items.

Address Position the window at a new address. You will be prompted to type in a new
address. You can type an arbitrary expression. See "Watcom Debugger
Expression Handling" on page 141. If you type the name of a variable, the
address of that variable is used. If the expression you type does not contain a
segment value DGROUP will be used as the segment if it can be located. The
program’s initial stack segment will be used otherwise.

Assembly Position the assembly window to the address of the memory under the cursor.
This is useful if you have incorrectly displayed a pointer as data and wish to
look at the code instead.

Type/Byte Display as hexadecimal bytes.

Type/Word Display as hexadecimal 16-bit words.

Type/Dword Display as hexadecimal 32-bit words.

Type/Qword Display as hexadecimal 64-bit words.

Type/Char Display as signed 8-bit integers.

Type/Short Display as signed 16-bit integers.

Type/Long Display as signed 32-bit integers.

The Memory and Stack Windows 79

Examining and Modifying the Program State

Type/__int64
Display as signed 64-bit integers.

Type/Unsigned Char
Display as unsigned 8-bit integers.

Type/Unsigned Short
Display as unsigned 16-bit integers.

Type/Unsigned Long
Display as unsigned 32-bit integers.

Type/Unsigned __int64
Display as unsigned 64-bit integers.

Type/0:16 Pointer
Display as 16-bit near pointers (16-bit offset).

Type/16:16 Pointer
Display as 32-bit far pointers (16-bit segment, 16-bit offset).

Type/0:32 Pointer
Display as 32-bit near pointers (32-bit offset).

Type/16:32 Pointer
Display as 48-bit far pointers (16-bit segment, 32-bit offset).

Type/Float Display as 32-bit floating-point values.

Type/Double
Display as 64-bit floating-point values.

Type/Extended Float
Display as 80-bit floating-point values.

7.2.1 Following Linked Lists

Use the memory window to display the memory address of the first node of your linked list.
Move to the "next" field of your structure and use the Near (or Far) Follow command. The
next node of your linked list will be displayed. Now by using the Repeat command you can
traverse the linked list.

80 The Memory and Stack Windows

Examining and Modifying the Program State

7.2.2 Traversing Arrays

Display the memory address of your array. Select the first byte of the second element of your
array then use the Cursor Follow command to move the second element of your array to the
beginning of the memory window. By using the Repeat command you can traverse your
array.

The Memory and Stack Windows 81

Examining and Modifying the Program State

82 The Memory and Stack Windows

Breakpoints

Breakpoints

84

8 Breakpoints

The Watcom Debugger uses the single term breakpoint to refer to the group of functions that
other debuggers often call breakpoints, watchpoints, and tracepoints.

A breakpoint is traditionally defined as a place in your program where you want execution to
stop so that you can examine program variables and data structures. A watchpoint causes
your program to be executed one instruction or source line at a time, watching for the value of
an expression to become true. Do not confuse a watchpoint with the watch window. A
tracepoint causes your program to be executed one instruction or source line at a time,
watching for the value of certain program variables or memory-referencing expressions to
change.

In the Watcom Debugger:

• Break-on-execute refers to the traditional breakpoint
• Break-on-write refers to the traditional tracepoint
• A traditional watchpoint is a break-on-execute or break-on-write that is coupled with a
condition

The Watcom Debugger unifies these three concepts by defining three parts to a breakpoint:

• the location in the program where the breakpoint occurs
• the condition under which the breakpoint is triggered
• the action that takes place when the breakpoint triggers

You can specify a countdown, which means that a condition must be true a designated number
of times before the breakpoint is triggered.

When a breakpoint is triggered, several things can happen:

• program execution is stopped (a breakpoint)
• an expression is executed (code splice)
• a group of breakpoints is enabled or disabled

In this chapter, you will learn about the breakpoint including how to set simple breakpoints,
conditional breakpoints, and how to set breakpoints that watch for the exact moment when a
program variable, expression, or data object changes value.

Breakpoints 85

Breakpoints

8.1 How to Use Breakpoints during a Debugging
Session

The following topics are discussed:

• "Setting Simple Breakpoints"

• "Clearing, Disabling, and Enabling Breakpoints" on page 87

8.1.1 Setting Simple Breakpoints

When debugging, you will often want to set a few simple breakpoints to make your program
pause execution when it executes certain code. You can set or clear a breakpoint at any
location in your program by placing the cursor on the source code line and selecting Toggle
from the Break menu or by clicking on the button to the left of the source line. You can set
breakpoints in the assembly window in a similar fashion. Setting a break-on-write breakpoint
is equally simple. Select the variable with the right mouse button and choose Break from the
pop-up menu.

Break points have three states. They are:

• enabled
• disabled
• cleared (non-existent)

The button for an enabled break point is a stop sign or [!]. The button for a disabled break
point is a grey stop sign or [.]. A green diamond or [] appears when no breakpoint exists at
the given line. The same buttons also appear in the Assembly window and the Break window
to indicate the status of a break point.

Note: Some lines in your program do not contain any machine code to execute and
therefore, you cannot set a breakpoint on them. The compiler does not generate
machine code for comments and some C constructs. All lines of code in your
program that can have a breakpoint on them have a button to the left of the
source line. You can click on them to change their current status.

86 How to Use Breakpoints during a Debugging Session

Breakpoints

8.1.2 Clearing, Disabling, and Enabling Breakpoints

Choosing Toggle from the Break menu (F9) toggles between the three different breakpoint
states:

• enabled
• disabled
• cleared (non-existent)

8.2 The Break Menu
You can use the Break menu to control your breakpoints. Operations including creating new
breakpoints, changing a breakpoint’s status, and viewing a list of all break points.

Toggle Change the status of the breakpoint at the current line in the source or assembly
window. The status alternates between enabled, disabled and cleared. The
button on the source or assembly line will be updated to reflect the status of the
breakpoint.

Note: Disabled and cleared breakpoints are not the same. If you disable a
breakpoint, you can re-enable it and retain the information about
the breakpoint (i.e., conditions, countdown, and actions). When
you clear a breakpoint, you lose all information about the
breakpoint. If you disable a breakpoint, and press F9 twice to
enable, you will lose the information about the breakpoint because
you cleared it before you re-enabled it. To enable a disabled
breakpoint without losing the breakpoint information, use the
Breakpoint Option dialog or the Breakpoint window.

At Cursor Set a breakpoint at the current line in the source or assembly window. If the
current line does not contain any executable code, the breakpoint is set on the
closest preceding line of code that does contain executable code. When you
choose At Cursor, the Breakpoint dialog appears.

New This allows you to create any type of breakpoint using a dialog. You must
specify the address in the dialog.

On Image Load...
Cause program execution to stop when an executable image (DLL) is
dynamically loaded. The menu item is only available when debugging an
Win32 or OS/2 executable. A dialogue will appear allowing you to add and
delete image names from the list. You only need to type a substring of the

The Break Menu 87

Breakpoints

actual image name. You can identify the file "C:\PATH\IMAGE.DLL" with any
substring, for example "IMAGE", "IMAGE.DLL" or "ATH\IMAGE.DLL".
Case is ignored in the image names.

On Debug Message
When checked, cause program execution to stop whenever Windows 3.1,
Windows NT, or Windows 95 prints a debug string. A debug string is printed
whenever the application or debug Kernel calls the OutputDebugString
function. This option is toggled each time it is selected from the Break menu.

View All Open the breakpoint window. This window will show a list of all breakpoints.
You can use the window to create, delete and modify breakpoints.

Clear All Clear all breakpoints.

Disable All Disable all breakpoints, but do not delete them.

Enable All Enable all breakpoints that are disabled.

Save Save all breakpoint information to a file. This is useful when you are creating
complicated breakpoints. You can save and restore them in a later debugging
session.

Restore Restore a set of breakpoints that were saved by using Save from the Break
menu.

88 The Break Window

Breakpoints

8.3 The Break Window

Figure 18. The Break Window

The Break window displays each breakpoint and its status. It appears when you select the
View All from the Break menu A breakpoint button appears at the left of each line. You can
click on this button to enable and disable a breakpoint. Unlike the source and assembly
windows, the button will not clear the breakpoint. Next appears the address of the breakpoint.
Finally, for break-on-execute breakpoints, the source or assembly code at the break point
location is displayed. For break-on-write breakpoints, the current value of the location is
displayed in hex.

You can modify any break point by double clicking on it, or by cursoring to it and pressing
enter. The Breakpoint Options dialog will appear to allow you to modify the break point.
Press the right mouse button to access the following pop-up menu items:

Modify Change the definition of the selected breakpoint. The Breakpoint dialog will
appear.

New Add a new breakpoint. An empty Breakpoint dialog will appear. You must
specify the address of the new Breakpoint. Refer to the section entitled "The

The Break Window 89

Breakpoints

Breakpoint Dialog" for a description of the items in the which appear in the
dialog.

Delete Delete the selected breakpoint.

Enable Enable the selected breakpoint.

Disable Disable the selected breakpoint.

Source Display the source code associated with the break point. This operation only
makes sense for break-on-execute breakpoints.

Assembly Display the assembly code associated with the selected line. This operation only
makes sense for break-on-execute breakpoints.

8.4 The Breakpoint Dialog

Figure 19. The Breakpoint Dialog

90 The Breakpoint Dialog

Breakpoints

The breakpoint dialog appears when you select At Cursor from the Break menu or New from
the Break menu and whenever you attempt to modify a break point. It allows you to define
the breakpoint and set all of its conditions. A description of the items in the dialog follows.

Address This edit field displays the address tag associated with the selected breakpoint.

When you choose At Cursor this field already contains an address that describes
the line of code that the cursor is on. The format of the address tag is
symbol+offset where symbol is the name of the nearest function and
offset is distance in bytes past that symbol where the break point is defined.
It is normally best NOT to edit this field. To change the line of source code,
leave the dialog, move the cursor to where you want the breakpoint, and use the
At Cursor command again.

When you choose New, this field is empty. You can type any valid address
expression in this field. It can be the name of a function, global variable. Refer
to the section entitled "Watcom Debugger Expression Handling" on page 141 for
more information about address expressions. In the dialog, you can click the
Symbols... button as a shortcut. You can type a partial symbol name like foo
and the Symbol button will show you a list of symbols that start with foo.
You can then choose one of these symbols by clicking on it or hitting ENTER.
Note that the first time you use the Symbols... in a debugging session, it will
take a while as the debugger sorts the symbol table for the program.

Note: Be careful when using local (stack) variables for a break-on-write
breakpoint. As soon as execution leaves the scope of the variable,
the memory will change at random since the variable does not
really exist any more and the memory will be used for other
variables. Also, if execution enters that variable’s scope again, the
variable may not have the same memory address.

Condition Use this field to enter a conditions that must be met before a breakpoint will
trigger. The condition can be an arbitrary debugger expression. These include
statements in the language you are debugging. A valid example for the C
language is i == 1.

Break on Execute
Check this field to create a break-on-execute breakpoints. If you choose
Execute, be sure that the address field contains a code address (function name or
code line number) and not a variable address. Variable are never executed. If
the address field names a variable, the breakpoint will never trigger.

Break on 1 Byte/2 Bytes/4 Bytes...
Check one of these fields to create break-on-write breakpoints. If you choose

The Breakpoint Dialog 91

Breakpoints

one of these options, be sure that the Address field contains a variable address
and not a code address. A code address will never be written to, so the
breakpoint will never trigger. The size of the memory location is defined by the
checkbox you use as follows:

1 Byte The breakpoint will trigger only when the first byte of the memory
address is written to.

2 Bytes The breakpoint will trigger when either of the first two bytes at the
memory address are written to.

4 Bytes The breakpoint will trigger if any of the first four bytes of the
memory address are written to.

etc. The breakpoint will trigger if any of the first "n" bytes of the
memory address are written to.

Countdown Use this field to enter the number of times an address must be hit before the
breakpoint triggers. Every time the breakpoint conditions are met, the
countdown decreases by one. The breakpoint will trigger only after the
countdown is at zero. Once the countdown reaches zero, the breakpoint will
trigger each time the conditions are met. If you have also set a condition, the
countdown will only decrease by one when the condition is true.

Total Hits This field displays the total number of times an address has been hit. This
includes the times the breakpoint does not trigger because a condition failed or
the countdown has not yet hit zero.

Reset Click on this button to reset the Total Hits field to zero.

Execute when Hit
Use this field to enter a debugger command. When the breakpoint is triggered,
the debugger will execute this command. You can use this field to execute
arbitrary C statements, change a variable or register, or even set other
breakpoints. For a more detailed description of commands that can be entered in
this field, refer to the section called "Debugger Commands" on page 175. If you
want to use this field to execute a statement in the language you are debugging,
you need to use a DO command in front of the statement. For example, you
could enter DO i = 10 to have the value of 10 assigned to i each time the
breakpoint triggered.

Resume Check this field if you want the program to resume execution after the Execute
when Hit command has been completed. This capability can be used to patch
your code.

Enabled This field displays the current status of the breakpoint. If it is checked, the
breakpoint is enabled. If it is unchecked, the breakpoint is disabled.

92 The Breakpoint Dialog

Breakpoints

Value For Break-on-Execute breakpoints this field displays the source line or the
assembly line at which the break point is defined. For Break-on-Write
breakpoints, this field displays the memory contents.

Clear Click on the clear button to clear the breakpoint and close the dialog.

The Breakpoint Dialog 93

Breakpoints

94 The Breakpoint Dialog

Assembly Level Debugging

Assembly Level Debugging

96

9 Assembly Level Debugging

This chapter addresses the following assembly language level debugging features:

• "The CPU Register Window"

• "The Assembly Window" on page 98

• "The I/O Ports Window" on page 100

• "The FPU Registers Window" on page 101

• "The MMX Registers Window" on page 102

9.1 The CPU Register Window

Figure 20. The CPU Register Window

You can open the CPU Register window by choosing Register from the Data menu. The
register names and values are displayed in this window. As you execute your program,
registers that have changed since the last trace or breakpoint will be highlighted.

You can modify a register value by double clicking on the value, or by cursoring to it and
pressing ENTER. Press the right mouse button to access the following pop-up menu items:

The CPU Register Window 97

Assembly Level Debugging

Modify Change the value of the selected register.

Inspect Open a Memory window displaying the memory contents of the address
specified by the register. If a segment register is selected, memory at offset 0 in
the segment will be displayed.

Hex Toggles the register window display format between hexadecimal and decimal.

Extended Displays the Extended 386 register set. This menu item sets options on a
per-window basis, overriding the global settings. When you use the menu item
to change these settings, they will not be saved between debugging sessions. To
change an option permanently, see "The Window Options Dialog" on page 38.

9.2 The Assembly Window

Figure 21. The Assembly Window

You can open the Assembly window by choosing Assembly from the Code menu. You can
Inspect an item in by double-clicking on it, or by cursoring to it and pressing ENTER. Press
the right mouse button to access the following pop-up menu items:

98 The Assembly Window

Assembly Level Debugging

Inspect When you selecting a memory address, register or operand and use Inspect, the
debugger opens a Memory Window displaying the selected memory address.

Break If a code address is selected this command will set a break-on-execute
breakpoint at the selected code address. If a variable address is selected, this
command will set a break-on-write breakpoint on the selected address. this does
not set a break at the current line. Use Toggle from the Break menu or At
Cursor from the Break menu to set a breakpoint at the current line.

Enter Function
Resume program execution until the selected function is executed.

Show/Source
Display the source code associated with the selected assembly line.

Show/Functions
Show the list of all functions defined in the current module.

Show/Address
Reposition the window at a new address. You will be prompted for an
expression. Normally you would type a function name but you can type any
expression that resolves to a code address. For example, you might type the
name of a variable that contains a pointer to a function. See "Watcom Debugger
Expression Handling" on page 141.

Show/Module...
Show a different module. You will be prompted for its name in a dialog. As a
shortcut, you can type the beginning of a module name and click the Module...
button. This will display a list of all modules that start with the text you typed.

Home Reposition the window to the currently executing location. The cursor will
move to the next line of the program to be executed.

Hex Toggle the Assembly window display between hexadecimal and decimal. This
menu item sets options on a per-window basis, overriding the global settings.
When you use the menu item to change these settings, they will not be saved
between debugging sessions. To change an option permanently, see "The
Window Options Dialog" on page 38.

The Assembly Window 99

Assembly Level Debugging

9.3 The I/O Ports Window

Figure 22. The I/O Window

Use the I/O window to manipulate I/O ports. This is only supported when the operating
system allows application software to use IN and OUT instructions. I/O ports can be added to
the window, and typed as a byte, word (2 bytes) or dword (4 bytes). Use New from the
pop-up menu to add a new port to the window. Once you have done this, four items will
appear on the line. First appears the read button which appears as an open book, or [r].
Second appears the write button. It is a pencil or [w]. Third appears the port address, and
finally the value. When you first enter a port address the value appears as question marks.
The debugger does not automatically read or write the value since this can have side effects.
In order to read the displayed value from the port, click on the read button. To write the
displayed value back, click on the write button. You can change the value by double clicking
on it, or by cursoring to it and pressing ENTER. Press the right mouse button to access the
following pop-up menu items:

100 The I/O Ports Window

Assembly Level Debugging

Modify Change the selected item. You can change either the value field or the address
field. This does not write the value back to the port. You must choose Write to
write to the port.

New Add a new line to the window. You can have several I/O ports displayed at
once.

Delete Delete the selected line from the window.

Read Read the displayed value from the port.

Write Write the displayed value to the port.

Type Change the display type of the value. The size of this type determines how
much is read from or written to the I/O port.

9.4 The FPU Registers Window

Figure 23. The FPU Registers Window

Choose FPU Registers from the Data menu to open the FPU window. This window displays
the current value and status of all the FPU registers. If you are debugging a program that uses
Intel 8087 emulation, this window display the contents of the emulator’s data area. You can
change a value by double-clicking on, it or by cursoring to it and pressing ENTER. Press the
right mouse button to access the following pop-up menu items:

Modify Change the value of the selected register, or bit. You will be prompted for a new
value, unless you are modifying a bit. A bit will toggle between 0 and 1.

Hex Toggle the FPU window display between hexadecimal and floating point
display. This menu item sets options on a per-window basis, overriding the
global settings. When you use the menu item to change these settings, they will
not be saved between debugging sessions. To change an option permanently,
see "The Window Options Dialog" on page 38.

The FPU Registers Window 101

Assembly Level Debugging

9.5 The MMX Registers Window

Figure 24. The MMX Registers Window

Choose MMX Registers from the Data menu to open the MMX window. This window
displays the current values and status of all the MMX registers. You can change a value by
double-clicking on, it or by cursoring to it and pressing ENTER. Press the right mouse button
to access the following pop-up menu items:

Modify Change the value of the selected register component. You will be prompted for
a new value. The same action can be performed by pressing ENTER or
double-clicking as described above.

Inspect This item has no function in the MMX register window.

Hex Toggle the MMX register window display between hexadecimal and floating
point display. This menu item sets options on a per-window basis, overriding
the global settings. When you use the menu item to change these settings, they
will not be saved between debugging sessions. To change an option
permanently, see "The Window Options Dialog" on page 38.

Signed Toggle the display of the contents of the MMX registers as signed or unsigned
quantities. When "signed" is enabled, each byte, word or double-word is
displayed as a signed quantity. When "signed" is disabled, each byte, word or
double-word is displayed as an unsigned quantity.

Byte Display the contents of the MMX registers as a series of 8 bytes.

Word Display the contents of the MMX registers as a series of 4 words.

DWord Display the contents of the MMX registers as a series of 2 double-words.

102 The MMX Registers Window

Remote Debugging

Remote Debugging

104

10 Remote Debugging

10.1 Overview
Remote debugging allows you to run the debugger on one side of a communication link and
the application being debugged on the other. Remote debugging is required when there is not
enough memory to run both the debugger and the application on the same machine.

The DOS debugger runs in protected mode (above the 1M mark), with a small memory
footprint in the first 640k. Newer operating systems such as OS/2 and Windows NT/95 have
eliminated the 640k barrier, so there is little need for remote debugging. Remote debugging is
also required to debug Novell NetWare applications.

There are many different communication links supported. Some communicate between two
machines. In this case an external communication medium is used. Some links communicate
between two operating systems shells on the same machine. In either case, the concepts are
the same.

While remote debugging, you may want to reference a file that is found on one machine or the
other. See the section entitled "Specifying Files on Remote and Local Machines" on page 119
for details about remote and local file names.

The debugger is broken down into 4 parts.

The Debugger This is the portion of the debugger that contains the user interface. It is the
largest part of the debugger. Its name is either WD.EXE, WDW.EXE or
WDC.EXE

The Debug Kernel The debugger interprets your requests and sends low level requests to the
debug kernel. It is a small executable that is dynamically loaded by the
debugger or a remote debug server and used to control your application. It can
be called STD.TRP, STD.DLL, RSI.TRP, ADS.TRP or PLS.TRP

Remote Trap Files— These are versions of the debug kernel file that take requests and send
them across a communications link to a remote debug server. You choose a trap
file using the debugger’s "trap" option. See "Common Switches" on page 16.
Trap files have a 3 letter file name that represents the name of the
communications layer being used. The file extension is TRP or DLL.

Overview 105

Remote Debugging

Remote Debug Servers— These executable files receive requests from a communications link
and pass them to a debug kernel. Remote debug server names all start with
???SERV. The first 3 letters represent the communication layer being used and
correspond to the trap file that is used on the other side of the link.

In the following examples,

A>cmd1
B>cmd2

indicates that cmd1 is to be run on one machine and cmd2 is to be run on the other.

A normal non-remote debugging session just uses the user interface and the debug kernel. All
components run on the same machine. This simple debugging session would be started with
the command:

A>wd app

+-----------+ +----------+ +----------+
WD.EXE		STD.TRP		APP.EXE
/ /				
\ \				
+-----------+ +----------+ +----------+

Debugging a Tenberry Software DOS/4GW (32-bit extended DOS) application is the same
except you must use a different trap file to control the application.

A>wd /trap=rsi app

+-----------+ +----------+ +----------+
WD.EXE		RSI.TRP		APP.EXE
/ /				
\ \				
+-----------+ +----------+ +----------+

A remote debugging session adds a remote debug server and a remote trap file as well. For
example, using the parallel port to debug between two machines would be accomplished using
the following components:

106 Overview

Remote Debugging

A>parserv
B>wd /tr=par app

+-----------+ +----------+
| WD.EXE | | PAR.TRP |
| / / |
| \ \ |
| | | |
+-----------+ +----------+

|
+-- parallel --+
| cable
|

+-----------+ +----------+ +----------+
PARSERV		STD.TRP		APP.EXE
.EXE / /				
\ \				
+-----------+ +----------+ +----------+

In order to start the above remote debugging session, you must follow these steps.

1. Connect the two machines with a parallel cable. See "Wiring For Remote
Debugging" on page 209.

2. Start the remote debug server (PARSERV) on one machine.
3. Start the debugger with the option "/trap=PAR" on the other machine. This causes

the debugger to load the remote trap file (PAR). This will communicate across the
remote link to PARSERV.EXE, which will in turn communicate with the debug
kernel (STD) in order to debug the application.

The rest of the debugger command line is identical to the command you would type if you
were debugging the application locally.

You must start the remote debug server first. If you do not, the remote trap file will not be
able to establish a communication link and the debugger will refuse to start.

It is important to realize that the application to be debugged must reside on the debug server
machine. It must be possible for the debug server to locate the application to be debugged. It
can be in the current working directory of the debugger server machine, or in the PATH, or a
path to locate the application on the debug server machine can be specified on the debugger
command line. Alternatively, you can ask the debugger to download the application to the
debug server machine if the application resides on the debugger machine.

A>parserv
B>wd /down /tr=par app

Overview 107

Remote Debugging

See the description of the "download" option in the section entitled "Common Switches" on
page 16.

If you are remote debugging a 32-bit application, you must use the correct trap file on the
remote debug server side of the link. The trap file specification must come first before any
other arguments on the command line.

A>serserv /tr=rsi
B>wd /tr=ser app

+-----------+ +----------+
| WD.EXE | | SER.TRP |
| / / |
| \ \ |
| | | |
+-----------+ +----------+

|
+--- serial ---+
| cable
|

+-----------+ +----------+ +----------+
SERSERV		RSI.TRP		APP.EXE
.EXE / /				
\ \				
+-----------+ +----------+ +----------+

Following is an example of an internal remote link. This example shows you how to use the
OS/2 version of the debugger to debug a DOS application.

+-----------+ +----------+
| WD.EXE | | NMP.DLL |
| / / |
| \ \ |
| | | |
+-----------+ +----------+

|
+-- OS/2 NP API --+
|

+-----------+ +----------+ +----------+
NMPSERV		STD.DLL		APP.EXE
.EXE / /				
\ \				
+-----------+ +----------+ +----------+

The communication medium employed in this case is OS/2 Named Pipes.

108 Overview

Remote Debugging

The debugger provides the following remote link capabilities:

NOV This link uses Novell’s SPX layer for communication. Supported under DOS,
OS/2, Windows 3.x, Windows NT and NetWare.

NET This link uses NetBIOS to communicate. If your network software supports
NetBIOS, you can use this link. Supported under DOS, OS/2, Windows 3.x, and
NetWare.

PAR This link supports communication using the parallel or printer port. Several
different cable configurations are supported. See "Wiring For Remote
Debugging" on page 209. Supported under DOS, OS/2, Windows 3.x, NetWare
and QNX.

SER This link uses a serial port to communicate. Rates of up to 115K BAUD are
supported. See "Wiring For Remote Debugging" on page 209. Supported under
DOS, OS/2 and QNX.

WIN This link will communicate between two Windows DOS boxes. Supported
under Windows 3.x and Windows 95 (for DOS applications only).

NMP This link will use Named Pipes to communicate internally between OS/2
sessions. OS/2, DOS and Win-OS/2 sessions are supported. If your network
supports Named Pipes, and you have at least one OS/2 machine on the network,
you can communicate between OS/2, DOS and Windows 3.x machines on the
network. Supported under OS/2 (DOS, OS/2 and Windows 3.x applications).

VDM This link is a subset of the NMP link. It is supported under OS/2 and Windows
NT. The application being debugged must be a DOS or seamless Win-OS/2
application. Supported under OS/2 and Windows NT (DOS, OS/2 and Windows
3.x applications).

TCP This link will use TCP/IP to communicate internally or over a network between
sessions. Supported under OS/2, Windows NT, Windows 95 and QNX.

Communication parameters may be passed to the remote trap file and the remote server. They
are passed to the remote trap file by following the name of the trap file with a semi-colon and
the parameter. For example:

A>serserv 2.4800

passes the parameter 2.4800 to the remote debug server. To pass the same parameter to the
remote trap file, use:

Overview 109

Remote Debugging

B>wd /tr=ser;2.4800 app

These link parameters are specific to each remote link and are described in the following
section.

Each of the debug servers can accept an optional "Once" parameter. The "Once" parameter is
used by the Watcom Integrated Development Environment. Usually, a server stays running
until terminated by the user. If the "Once" option is specified, the remote server will
terminate itself as soon as the debugger disconnects from it.

10.2 Link Descriptions
The following communication links are described:

• "NOV (Novell SPX)"

• "NET (NetBIOS)" on page 111

• "PAR (Parallel)" on page 111

• "SER (Serial)" on page 112

• "WIN (Windows 3.x/95 Virtual DOS Machine)" on page 114

• "NMP (Named Pipes)" on page 115

• "VDM (Virtual DOS Machine)" on page 116

• "TCP/IP (Internet Packets)" on page 117

10.2.1 NOV (Novell SPX)

This link communicates over a Novell Network. In order to use this link, you must have a
NetWare requester installed on both machines. Be sure that it is configured to include the
SPX option. Consult your NetWare documentation for details.

The parameter to this link is an arbitrary name to be used for the connection. This allows
multiple network users users to remote debug simultaneously. The default name is NovLink.
If the remote server will not start, try specifying a different name for the link. The following
example shows how to use the default link parameters:

110 Link Descriptions

Remote Debugging

A>novserv
B>wd /tr=nov app

The following example shows how to name "john" as a link parameter:

A>novserv john
B>wd /tr=nov;john app

10.2.2 NET (NetBIOS)

This link communicates over NetBIOS. In order to use this link, you must have NetBIOS
installed on both machines. Consult your network documentation for details.

The parameter to this link is an arbitrary name to be used for the connection. This allows
multiple network users users to remote debug simultaneously. The default name is NetLink.
The following example shows how to use the default link parameters.

A>netserv
B>wd /tr=net app

The following example shows how to use the name "tammy" as a link parameter.

A>netserv tammy
B>wd /tr=net;tammy app

10.2.3 PAR (Parallel)

This link communicates over the parallel port. Three different cable types may be used. They
are called the LapLink, Flying Dutchman, and WATCOM cables. Although the WATCOM
cable will communicate considerably faster than the other two, we have found it to be
unreliable on some printer cards. See "Wiring For Remote Debugging" on page 209.

The parameter to this link is a number from 1 to 3 or the letter "p" followed by a hexadecimal
printer I/O port address. This tells the software which parallel port the cable is connected to
(LPT1, LPT2, LPT3). The default is 1. The parameter used on each side of the link depends
on which printer port the cable is plugged into on that machine. It need not be the same on
both sides. The following example shows how to debug across a parallel cable plugged into
printer port 3 on one machine and port 2 on the other.

A>parserv 3
B>wd /tr=par;2 app

Link Descriptions 111

Remote Debugging

As an alternative, you can specify a port address to use. It is less convenient than specifying a
port number but will work on systems like OS/2 where the actual I/O port address cannot be
obtained from the system. The following example shows how to debug across a parallel cable
plugged into I/O port 0x378 on one machine and port 2 on the other.

A>parserv p378
B>wd /tr=par;2 app

If you are going to debug a DOS extender application, then you must also specify a trap file to
the server program. The trap file must be specified before the port number. The following
example shows how to debug a 32-bit DOS/4GW application across a parallel cable plugged
into printer port 2 on one machine and port 3 on the other.

A>parserv /tr=rsi 2
B>wd /tr=par;3 app

The "RSI" trap file is specified for DOS/4G(W) applications. You can specify other trap files
for the other DOS extenders (e.g., "PLS" for Phar Lap). Do not forget to include other
required files in the path.

RSI Both "DOS4GW.EXE" and the loader help file "RSIHELP.EXP" must also be
located in one of the directories listed in the DOS PATH environment variable.
See the section entitled "Debugging DOS/4G(W) 32-bit DOS Extender
Applications" on page 130 for more information on debugging applications that
use the DOS/4GW DOS extender.

PLS One or more of "RUN386.EXE" (or "TNT.EXE"), "DBGLIB.REX",
"PLSHELP.EXP", and "PEDHELP.EXP" must be located in one of the
directories listed in the DOS PATH environment variable. See the section
entitled "Debugging Phar Lap 32-bit DOS Extender Applications" on page 130
for more information on debugging applications that use the Phar Lap DOS
extender.

ADS See the section entitled "Debugging AutoCAD Applications" on page 131 for
more information on debugging AutoCAD applications.

10.2.4 SER (Serial)

This link communicates over the serial port. See the appendix entitled "Wiring For Remote
Debugging" on page 209 for wiring details. The debugger and server will automatically
synchronize on a communications speed. They may communicate at rates as high as 115kB.
The DOS and OS/2 "mode" command or the QNX "stty" commands need not be used.

112 Link Descriptions

Remote Debugging

The parameter to this link takes the form

port number.baud rate

port number is a number from 1 to 3 indicating which serial port the cable is connected to.
The default is 1.

baud rate is the maximum BAUD rate at which to communicate. If you already know the
maximum BAUD rate at which the two machines will communicate, this parameter will speed
up the connection time by eliminating some of the synchronization protocol.

baud rate may be any of 115200, 57600, 38400, 19200, 9600, 4800, 2400, or 1200. It
may be shortened to the first 2 digits.

A special BAUD rate of 0 is also allowed. This should be used if the serial port has been
pre-assigned using the "mode" or "stty" commands. The pre-assigned BAUD rate is used and
the BAUD rate negotiation is avoided. This will allow you to debug over a modem.

The following example shows how to debug across a serial cable using default settings:

A>serserv
B>wd /tr=ser app

The following example shows how to debug across a serial cable using serial port 2 on each
machine setting the maximum BAUD rate to 9600:

A>serserv 2.9600
B>wd /tr=ser;2.9600 app

QNX Note: Under QNX, a node id may be specified followed by a comma if the serial port
is not located on the current node. The command "serserv 3,1.9600" would use
the device //3/dev/ser1 at a BAUD rate of 9600. Alternatively, you can specify a
device such as /dev/foobar. To specify the maximum line speed, you can specify
something like /dev/foobar.56. Of course, you can also include a node id such
as //5/dev/foobar.

A>serserv //3/dev/ser2.9600
B>wd /tr=ser;//5/dev/ser2.9600 app

If you are going to debug a DOS extender application, then you must also specify a trap file to
the server program. The trap file must be specified before the port number and BAUD rate.
The following example shows how to debug a 32-bit DOS/4GW application across a serial
cable using serial port 1 on one machine and serial port 2 on the other machine setting the
maximum BAUD rate to 9600 for each:

Link Descriptions 113

Remote Debugging

A>serserv /tr=rsi 1.9600
B>wd /tr=ser;2.9600 app

The "RSI" trap file is specified for DOS/4G(W) applications. You can specify other trap files
for the other DOS extenders (e.g., "PLS" for Phar Lap). Do not forget to include other
required files in the path.

RSI Both "DOS4GW.EXE" and the loader help file "RSIHELP.EXP" must also be
located in one of the directories listed in the DOS PATH environment variable.
See the section entitled "Debugging DOS/4G(W) 32-bit DOS Extender
Applications" on page 130 for more information on debugging applications that
use the DOS/4GW DOS extender.

PLS One or more of "RUN386.EXE" (or "TNT.EXE"), "DBGLIB.REX",
"PLSHELP.EXP", and "PEDHELP.EXP" must be located in one of the
directories listed in the DOS PATH environment variable. See the section
entitled "Debugging Phar Lap 32-bit DOS Extender Applications" on page 130
for more information on debugging applications that use the Phar Lap DOS
extender.

ADS See the section entitled "Debugging AutoCAD Applications" on page 131 for
more information on debugging AutoCAD applications.

10.2.5 WIN (Windows 3.x/95 Virtual DOS Machine)

This link communicates between 2 Windows DOS boxes. In order to use this link, you must
have Windows 3.x or Windows 95 installed on your machine. You must run Windows 3.x in
enhanced mode. You must also include the "device" specification listed below in the
[386Enh] section of your "SYSTEM.INI" file (this line is usually added during the Watcom
software installation process).

DEVICE=C:\WATCOM\BINW\WDEBUG.386

In order for this link to work properly, you must ensure that this link runs in a DOS box that
has background execution enabled.

The parameter to this link is an arbitrary name to be used for the connection. This allows you
to have multiple remote debug sessions active simultaneously. The default name is WinLink.
The following examples show how to use the default name or specify a link name using the
Windows 3.x/95 VDM link.

114 Link Descriptions

Remote Debugging

A>winserv
B>wd /tr=win app

A>winserv whats in a name
B>wd /tr=win;whats in a name app

The following examples show how to debug a 32-bit extended DOS application using the
Windows 3.x/95 VDM link.

A>winserv /tr=rsi
B>wd /tr=win app

A>winserv /tr=rsi whats in a name
B>wd /tr=win;whats in a name app

The "RSI" trap file is specified for DOS/4G(W) applications. You can specify other trap files
for the other DOS extenders (e.g., "PLS" for Phar Lap). Do not forget to include other
required files in the path.

RSI Both "DOS4GW.EXE" and the loader help file "RSIHELP.EXP" must also be
located in one of the directories listed in the DOS PATH environment variable.
See the section entitled "Debugging DOS/4G(W) 32-bit DOS Extender
Applications" on page 130 for more information on debugging applications that
use the DOS/4GW DOS extender.

PLS One or more of "RUN386.EXE" (or "TNT.EXE"), "DBGLIB.REX",
"PLSHELP.EXP", and "PEDHELP.EXP" must be located in one of the
directories listed in the DOS PATH environment variable. See the section
entitled "Debugging Phar Lap 32-bit DOS Extender Applications" on page 130
for more information on debugging applications that use the Phar Lap DOS
extender.

10.2.6 NMP (Named Pipes)

The named pipes link allows you to communicate between any two sessions on an OS/2
machine. You can also debug remotely between DOS, Windows 3.x and OS/2 machines if
you have installed remote named pipe support on these machines. See your network
documentation for details on remote named pipes.

In order to use named pipes, you must first run the NMPBIND program. This may run any
OS/2 machine on the network. It can be run detached, by putting the following line into your
OS/2 CONFIG.SYS.

Link Descriptions 115

Remote Debugging

RUN=C:\WATCOM\BINP\NMPBIND.EXE

If you run NMPSERVW under Win-OS/2, it must be run as a seamless Windows session.
This is due to the fact that full screen Win-OS/2 sessions may not get any processor time
when they are not in the foreground.

The parameter to this link can take the following forms:

name
name@machine

name is an arbitrary name to be used for the connection. This allows you to have multiple
remote debug sessions active simultaneously. The default name is NMPLink.

machine is the name of the machine on which the NMPBIND program is running. This
allows you to use remote named pipes.

The following example shows you how to use the named pipe link between two sessions on
the same OS/2 machine.

A>nmpserv
B>wd /tr=nmp app

The following example assumes that there is a machine named HAL with a remote named
pipe server on the network which is running NMPBIND.

A>nmpserv mylink@hal
B>wd /tr=nmp;mylink@hal app

10.2.7 VDM (Virtual DOS Machine)

VDM is actually a limited version of named pipes that does not require the NMPBIND
program to be running. It has several restrictions however.

1. It does not support network debugging.
2. Under OS/2, the debugger (user interface) must run in an OS/2 (not a DOS)

session. The debugger may also be started under Windows NT but not Windows
95 since it does not support named pipes.

3. Under OS/2, the remote debug server must run in a seamless Win-OS/2 or a DOS
session.

4. Under Windows NT, the remote debug server will be run in a Windows NT Virtual
DOS Machine.

116 Link Descriptions

Remote Debugging

5. Under Windows 95, the remote debug server can be started but since Windows 95
does not support named pipes it will not work properly. See the section entitled
"WIN (Windows 3.x/95 Virtual DOS Machine)" on page 114 for an alternative.

6. If you are running VDMSERVW under Win-OS/2, it must be run as a seamless
Windows session. This is due to the fact that full screen Win-OS/2 sessions may
not get any processor time when they are not in the foreground.

The parameter to this link is an arbitrary name to be used for the connection. This allows you
to have multiple VDM debug sessions active simultaneously. The default name is VDMLink.
The following example shows how to use the VDM link:

A>vdmserv
B>wd /tr=vdm app

The following example shows how to use the VDM link specifying "brian" as the link name.

A>vdmserv brian
B>wd /tr=vdm;brian app

10.2.8 TCP/IP (Internet Packets)

The TCP/IP link allows you to communicate between any two sessions using TCP/IP if you
have installed TCP/IP support. You can also debug remotely between OS/2 and Windows
NT/95 machines if you have installed TCP/IP support on these machines. See your network
documentation for details on installing TCP/IP support.

In order to use TCP/IP to remotely debug a program, you must start the TCPSERV server
program first.

Example:
A>tcpserv
Socket port number: 3563
WATCOM TCP/IP Debug Server
Version 11.0
Copyright by WATCOM International ...
Press ’q’ to exit

The server program displays an available socket port number on the screen.

You may specify a TCP/IP "service" as an argument on the command line. TCPSERV will
check the TCP/IP services list to find a matching service. If no argument is specified on the
command line, TCPSERV uses "tcplink" as the service name. If no matching service name is
found, TCPSERV attempts to convert the argument to a numeric port number and use that. If
the argument can not be converted to a number, port number 3563 is used.

Link Descriptions 117

Remote Debugging

The TCP/IP services list is stored in different places depending on the operating system.

OS/2 d:\TCPIP\ETC\SERVICES depending on the drive where TCP/IP is
installed

QNX /etc/services

Windows 95 d:\windows\SERVICES depending on the drive and directory where
Windows 95 is installed

Windows NT d:\WINNT35\SYSTEM32\DRIVERS\ETC\SERVICES depending on the
drive where Windows NT is installed

You will also need to know the Internet Protocol (IP) address of the machine running the
TCPSERV program. This can be in alphanumeric or numeric form (e.g., jdoe.watcom.on.ca
or 172.31.0.99). With the alphanumeric form, it is not necessary to specify the domain name
portion if the two machines are in the same domain.

To use the remote TCP/IP server, you must specify the TCP/IP trap file name to the debugger
along with an argument consisting of your IP address, optionally followed by a ":" and the
service name or socket port number used by TCPSERV. You must also include the name of
the application you wish to run and debug on the remote machine.

Example1:
A>tcpserv
B>wd /tr=tcp;jdoe app

or
B>wd /tr=tcp;172.31.0.99 app

Example2:
A>tcpserv 1024
B>wd /tr=tcp;jdoe:1024 app

or
B>wd /tr=tcp;jdoe.watcom.on.ca:1024 app

or
B>wd /tr=tcp;172.31.0.99:1024 app

Example3:
A>tcpserv dbgservice
B>wd /tr=tcp;jdoe:dbgservice app

or
B>wd /tr=tcp;jdoe.watcom.on.ca:dbgservice app

or
B>wd /tr=tcp;172.31.0.99:dbgservice app

118 Link Descriptions

Remote Debugging

The TCP/IP remote debug service permits debugging of applications anywhere on the
Internet. However, response will vary with the distances involved.

10.3 Specifying Files on Remote and Local Machines
In order to identify files on either the local or remote machine, two special prefixes are
supported.

@L The "@L" prefix is used to indicate that the file resides on the local machine (the
one on which the debugger is running).

@L[d:][path]filename[.ext]

When "[path]" is not specified, the current directory of the specified drive of the
local machine is assumed. When "[d:]" is not specified, the current drive of the
local machine is assumed.

Example:
@LOUTPUT.LOG
@LD:\CMDS
@LD:\CMDS\DATA.TMP

@R The "@R" prefix is used to indicate that the file resides on the remote machine.

@R[d:][path]filename[.ext]

When "[path]" is not specified, the current directory of the specified drive of the
remote machine is assumed. When "[d:]" is not specified, the current drive of
the remote machine is assumed.

Example:
@RMYAPPL.DAT
@RD:\PROGRAMS\EXE\MYAPPL.LNK
@R\PROGRAMS\SRC
@R\PROGRAMS\SRC\UILIB.C

Thus a file may be identified in three different ways.

[d:][path]filename[.ext]
@L[d:][path]filename[.ext]
@R[d:][path]filename[.ext]

Specifying Files on Remote and Local Machines 119

Remote Debugging

A file of the first form resides on either the local or remote machine depending on whether the
current drive is a local or remote drive. A file of the second form always resides on the local
machine. A file of the third form always resides on the remote machine.

Notes:

1. In the each form, the omission of "[d:]" indicates the current drive.

[path]filename[.ext]
@L[path]filename[.ext]
@R[path]filename[.ext]

2. In the each form, the omission of "[path]" indicates the current path of the specified
drive.

[d:]filename[.ext]
@L[d:]filename[.ext]
@R[d:]filename[.ext]

Observe that if "[d:]" is omitted also then the following forms are obtained:

filename[.ext]
@Lfilename[.ext]
@Rfilename[.ext]

3. The special drive prefixes "@L" and "@R" cannot be used in your own application
to reference files on two different machines. These prefixes are recognized by the
Watcom Debugger only. Should the situation arise where one of your filenames
begins with the same prefix ("@L", "@l", "@R" or "@r") then "@@" can be used.
For example, if your wish to refer to the file on disk called "@link@" then you
could specify "@@link@". Note that ".\@link@" would also suffice.

120 Specifying Files on Remote and Local Machines

Interrupting A Running Program

Interrupting A Running Program

122

11 Interrupting a Running Program

11.1 Overview
It is not unusual for your code to contain an endless loop that results in the program getting
stuck in one spot. You then want to interrupt the program so that you can see where it’s
getting stuck. The process to give control back to the debugger is different for each operating
system.

11.2 DOS
Press the Print Screen key. This will work if the program is stuck in a loop. If it has
misbehaved in some other way, Print Screen may have no effect since a misbehaved
application may overwrite code, data, the debugger, or operating system code.

11.3 Windows 3.x
Press CTRL-ALT-F. Windows must be running in enhanced mode and the device
WDEBUG.386 must be installed the [386Enh] section of SYSTEM.INI for this to work. You
cannot interrupt a running program under Win-OS/2.

11.4 Windows NT, Windows 95
If you are using the non-GUI version of the debugger, switch focus to the debugger screen and
press CTRL-BREAK.

If you are using the GUI-based version of the debugger or one of the remote debug servers,
switch focus to the debugger or debug server screen and click anywhere. When you switch to
the debugger screen, you will see a pop-up stating that:

The debugger cannot be used while the application is
running. Do you want to interrupt the application?

Windows NT, Windows 95 123

Interrupting A Running Program

If you select "Yes", the debugger will attempt to interrupt the application. If you select "No",
the debugger will resume waiting for the application to hit a breakpoint or terminate.

If you select "Yes" and the debugger cannot interrupt the application, you can click on the
debugger again and it will display a pop-up asking:

The debugger could not sucessfully interrupt your
application. Do you want to terminate the application?

If you select "Yes", the debugger will terminate your application. If you select "No", the
debugger will resume waiting for the program to hit a breakpoint or terminate.

Note: Under Windows 95, it is very difficult to interrupt a program that is in an infinite
loop or spending most of its time in system API’s. Under Windows 95, you can
only interrupt a program that is responding to messages (or looping in its own
thread code). If your program is an infinite loop, interrupting the program will
likely fail. The only option in this case is to terminate the program.

This is not an issue under Windows NT which has a superior debug API.

If you press CTRL-BREAK when the application has focus, you will terminate the application
being debugged rather than interrupting it.

11.5 OS/2
Use the program manager to switch focus to the debugger screen then press CTRL-BREAK.
If you press CTRL-BREAK when the application has focus, you will terminate the application
being debugged rather than interrupting it.

11.6 NetWare
On the NetWare file server console, press ALT-ESCAPE while holding down both SHIFT
keys. In some instances, this may cause the system debugger to become active instead of the
Watcom Debugger.

124 NetWare

Interrupting a Running Program

11.7 QNX
Switch focus to the debugger console and press CTRL-BREAK. Alternatively, you may send
any unhandled signal to the application being debugged. Consult your QNX system
documentation for details.

QNX 125

Interrupting A Running Program

126 QNX

Operating System specifics

Operating System specifics

128

12 Operating System Specifics

This section discusses the following topics:

DOS Extender debugging
See the section entitled "Debugging 32-bit DOS Extender Applications".

AutoCAD debugging
See the section entitled "Debugging AutoCAD Applications" on page 131.

NLM debugging
See the section entitled "Debugging a Novell NLM" on page 132.

Graphics programs
See the section entitled "Debugging Graphics Applications" on page 133.

Windows 3.x debugging
See the section entitled "Debugging Windows 3.x Applications" on page 133.

DLL debugging
See the section entitled "Debugging Dynamic Link Libraries" on page 134.

Disabling 386/486 debug registers
See the section entitled "Disabling Use of 386/486 Debug Registers" on page
135.

QNX debugging
See the section entitled "Debugging Under QNX" on page 135.

12.1 Debugging 32-bit DOS Extender Applications
The Watcom Debugger supports debugging of 32-bit applications developed with Watcom
C/C++32, Watcom FORTRAN 7732, and assembly language. A DOS extender must be used
to run the application. The following DOS extenders are supported.

Debugging 32-bit DOS Extender Applications 129

Operating System specifics

DOS/4GW a DOS extender from Tenberry Software, Inc. DOS/4GW is a subset of
Tenberry Software’s DOS/4G product. DOS/4GW is customized for use with
Watcom C/C++32 and Watcom FORTRAN 7732 and is included in these
packages.

386|DOS-Extender
(version 2.2d or later) a DOS extender from Phar Lap Software, Inc.

12.1.1 Debugging DOS/4G(W) 32-bit DOS Extender Applications

When using the Tenberry Software DOS extender, the "DOS4GW.EXE" or "DOS4G.EXE"
file must be located in one of the directories listed in the DOS PATH environment variable.
The "DOS4GW.EXE" file will usually be stored in the "BINW" directory of the WATCOM
compiler package. You must also use the TRap=RSI option. The "RSI.TRP" file will usually
be stored in the "BINW" directory of the WATCOM compiler package. You should ensure
that this "BINW" directory is included in the DOS PATH environment variable. Otherwise,
you must specify the full path name for the trap file.

The help file "RSIHELP.EXP" must also be located in one of the directories listed in the DOS
PATH environment variable. It will usually be stored in the "BINW" directory of the
WATCOM compiler package.

Example:
C>wd /trap=rsi hello

or
C>set wd=/trap#rsi
C>wd hello

12.1.2 Debugging Phar Lap 32-bit DOS Extender Applications

When using the Phar Lap Software, Inc. DOS extender, the "RUN386.EXE" (or
"TNT.EXE"), "DBGLIB.REX", "PLSHELP.EXP", and "PEDHELP.EXP" files must be
located in one of the directories listed in the DOS PATH environment variable. You must
also use the TRap=PLS option. The "PLS.TRP", "PLSHELP.EXP" and "PEDHELP.EXP"
files will usually be stored in the "BINW" directory of the WATCOM compiler package. You
should ensure that this "BINW" directory is included in the DOS PATH environment
variable. Otherwise, you must specify the full path name for the trap file.

Parameters are passed to the "RUN386" or "TNT" DOS extender using the TRap option. The
entire parameter must be placed within braces. The following example illustrates how to
debug a Phar Lap application passing the -maxreal switch to RUN386.EXE or TNT.EXE.

130 Debugging 32-bit DOS Extender Applications

Operating System Specifics

Example:
C>wd /trap=pls;{-maxreal 512} hello

or
C>set wd=/trap#pls;{-maxreal 512}
C>wd hello

12.2 Debugging AutoCAD Applications
The Watcom Debugger can be used to debug AutoCAD Development System (ADS) and
AutoCAD Device Interface (ADI) applications. Before running the debugger, add a line
similar to the following to your "ACAD.ADS" file. This line specifies the path to the
"ADSHELP.EXP" file.

C:\WATCOM\BINW\ADSHELP.EXP

The file "ACAD.ADS" contains a list of AutoCAD applications that are loaded by AutoCAD
when AutoCAD is started. "ADSHELP.EXP" is an AutoCAD application that is required by
the debugger for debugging AutoCAD applications.

To debug an ADS application, a special trap file "ADS.TRP" must be used.

WD /TRap=ADS

If you do not have a two-monitor setup, you should also specify the Swap option.

WD /TRap=ADS /Swap

Note that we did not specify the AutoCAD executable file; the trap file, "ADS.TRP", will load
AutoCAD automatically. You should now be in the debugger. At this point, choose
Command from the File menu and enter the following debugger command specifying the
name of the file containing your AutoCAD application (e.g., foo.exp).

Debugging AutoCAD Applications 131

Operating System specifics

Example:
DBG>ads foo.exp

The file "ADS.DBG" contains a sequence of debugger commands that starts AutoCAD, loads
the debugging information from the executable file you specify, and relocates address
information based on the code and data selector values for your application.

You should now be in AutoCAD. When you load your AutoCAD application from
AutoLISP, the debugger will be entered and source for your program should be displayed in
the source window.

Example:
xload "foo.exp"

You are now ready to debug your AutoCAD application.

12.3 Debugging a Novell NLM
Novell NLM’s may only be debugged remotely. You must use either the serial, parallel, or
Novell SPX link. There are 5 NLM’s distributed in the WATCOM package. The following
table describes their use:

NetWare 3.11/3.12 NetWare 4.01

Serial serserv4.nlm
Parallel parserv3.nlm parserv4.nlm
SPX novserv3.nlm novserv4.nlm

To start remote debugging, you load one of the above NLMs at the NetWare file server
console. The debugger is then invoked as in any remote debugging session. See the chapter
entitled "Remote Debugging" on page 105 for parameter details. See the appendix entitled
"Wiring For Remote Debugging" on page 209 for parallel/serial cable details.

For example, on a NetWare 4.01 server type: load novserv4

On a workstation, type: WD /tr=nov mynlm

Debugging information for every running NLM is available. You can debug any NLM in the
system as if it were part of your application, as long as you created it with debug information.
If the NLM does not have WATCOM style debugging information, the debugger will attempt
to use any debugging information created by Novell’s linker (NLMLINK).

132 Debugging a Novell NLM

Operating System Specifics

12.4 Debugging Graphics Applications
When debugging a graphics application, there are a number of Watcom Debugger command
line options that could be specified depending on your situation.

1. If you only have one monitor attached to your system, use the Swap option. The
Swap option specifies that the application’s screen memory and the debugger’s
screen memory are to be swapped back and forth using a single page.

2. If you have two monitors attached to your system then the Two and Monochrome
options should be used. The Two option specifies that a second monitor is
connected to the system. Note that if the monitor type (Monochrome, Color,
Colour, Ega43, Vga50) is not specified then the monitor that is not currently being
used is selected for the debugger’s screen. If you specify Monochrome then the
monochrome monitor will be used for the debugger’s screen.

3. If you are debugging the graphics application using a second personal computer
and the remote debugging feature of the Watcom Debugger then the choice of
display and operation mode for the Watcom Debugger is irrelevant. If one system
is equipped with a graphics display and the other with a monochrome display then
you will undoubtedly use the system equipped with the monochrome display to run
the Watcom Debugger.

12.5 Debugging Windows 3.x Applications
Both a character mode and a GUI debugger are supplied that run in the Windows
environment. You must choose which of these debuggers you are going to use. They both
have advantages and disadvantages. When your application is suspended, the GUI and
character mode debuggers behave differently. The GUI debugger allows other applications to
continue running. The character mode debugger does not. Although the GUI debugger has a
much nicer looking user interface, you should not use it under some circumstances. You can
always use the character mode debugger. You should be aware of the following restrictions:

1. If you are trying to debug an applications that uses DDE you should not use the
GUI debugger.

2. Do not try to use the GUI debugger to debug system modal dialogs.
3. If you hit a break-point in a dialog callback procedure or in your window procedure

when it is receiving certain events (e.g., WM_MENUSELECT), the GUI debugger
will lock input to itself. When this happens, you will not be able to switch away
from the debugger, and no other application will repaint themselves. When this

Debugging Windows 3.x Applications 133

Operating System specifics

happens, pop-up menus will not draw correctly and you will have to use the Action
menu instead. You should not try to quit the debugger when it is in this state.

4. Do not try to use either of the Windows debuggers in a seamless Win-OS/2 session.

If you find that the Windows debugger starts too slowly, try using the DIp=WATCOM option.
This prevents the debugger from searching each DLL in the system for debugging
information. It will start up faster, but you will not be able to see the name of the Windows
API calls.

To start the Watcom Debugger, select the program group in which you have installed the
Watcom Debugger. One of the icons presented is used to start the debugger. Double-click on
the Watcom Debugger icon.

You can make special versions of the Watcom Debugger icon using Properties from the File
menu of the Windows "Program Manager". For example, you can add any options you wish
to the "Command Line" field of the "Properties" window. When you click on the newly
created icon, the options specified in the "Command Line" field are the defaults. As long as
no executable file name was specified in the "Command Line" field, the Watcom Debugger
will present its prompt window. In the prompt window, you can specify an executable file
name and arguments.

If you are debugging the same program over and over again, you might wish to create an icon
that includes the name of the file you wish to debug in the "Command Line" field. Each time
you click on that icon, the Watcom Debugger is started and it automatically loads the program
you wish to debug.

12.6 Debugging Dynamic Link Libraries
The debugger automatically detects all DLLs that your application references when it loads
the application. When your program loads a DLL dynamically, the debugger detects this as
well. If you have created your DLL with debugging information, you can debug it just as if it
were part of your application. Even if it does not have debugging information, the debugger
will process system information to make the DLL entry point names visible. There are a few
limitations:

1. You cannot debug your DLL initialization code. This is the first routine that the
operating system runs when it loads the DLL. This is not normally a problem,
since most DLLs do not do much in the way of initialization.

2. When a DLL is loaded dynamically, its debugging information may not be
available immediately. Try tracing a few instructions and it will appear.

134 Debugging Dynamic Link Libraries

Operating System Specifics

3. If you restart an application, you will lose any break points that you had set in
dynamically loaded DLLs. You need to trace back over the call to LoadModule or
DOSLoadModule and re-set these break points.

12.7 Disabling Use of 386/486 Debug Registers
It may be necessary to prevent the Watcom Debugger from using the 386/486 Debug
Registers (a hardware feature used to assist debugging). This situation arises with certain
DOS control programs that do not properly manage Debug Registers. If the Watcom
Debugger fails upon startup on a 386/486 system, it is a good indication that use of the Debug
Registers must be disabled. With "STD.TRP", the trap file parameter "d" may be specified to
disable the use of Debug Registers. The following example illustrates the specification of the
"d" trap file parameter.

Example:
C>wd /trap=std;d calendar

12.8 Debugging Under QNX
When the debugger starts up, it will attempt to open the initialization file .wdrc provided
that you have not specified the Invoke command line option. It looks for this file in all the
usual places (CWD, WD_PATH, /usr/watcom/<ver>/wd, /usr/watcom/wd).
This file normally contains your customization commands. If it is found, it is processed as the
default configuration file. You would normally place this file in your home directory.

If the file does not exist, the debugger then looks for the wd.dbg file.

If you do not want the debugger to use the .wdrc file then you can do one of two things —
make sure that it cannot be located (e.g., delete it) or use the Invoke command line option (you
could specify the wd.dbg file as the target).

The supplied version of the wd.dbg file contains an "invoke" command referencing the file
setup..dbg This file, in turn, contains a "configfile" command and "invoke" commands
referencing other command files. The "configfile" command marks setup.dbg as the
default file name to use when the debugger writes out the current configuration.

The following section entitled "Debugging Under QNX Using the Postmortem Dump
Facility" on page 136 describes the use of the debugger with the Postmortem dump facility.
The following section entitled "Search Order for Watcom Debugger Support Files under
QNX" on page 138 describes the search order for debugger files under QNX.

Debugging Under QNX 135

Operating System specifics

12.8.1 Debugging Under QNX Using the Postmortem Dump Facility

A limited form of debugging of an application that has terminated and produced a postmortem
dump can be done under QNX. In order to use this feature, you must start the QNX "dumper"
program.

dumper [-d path] [-p pid] &

dumper is the program name for the QNX postmortem dump program.

-d path The name of the directory in which postmortem dumps are written. If not
specified, the default is the user’s home directory.

-p pid Save a dump file for this process if it terminates for any reason. Do not save a
dump file for any other process.

& must be specified so that the shell is rejoined.

Example:
$ dumper &
$ dumper -d /usr/fred/dump area &

Whenever a program terminates abnormally, a dump of the current state of the program in
memory is written to disk. The dump file name is the same as the program name with a .dmp
extension. For example, if the program name is a.out then the dump will be written to the
/home/userid/a.out.dmp file.

You can use the -d option of the dumper program to force all dumps into a single directory
rather than into the invoking user’s home directory.

The -p option lets you monitor a particular process. You can run multiple copies of the
dumper program, each monitoring a different process.

If the Watcom Debugger was being used to debug the program at the time that it abnormally
terminated then the dump is written to the user’s home directory provided that the -d option
was not used.

To examine the contents of the postmortem dump, the Watcom Debugger may be used. The
interface between the Watcom Debugger and the postmortem dump is contained in a special
"trap" file. The trap file is specified to the Watcom Debugger using the TRap option.

136 Debugging Under QNX

Operating System Specifics

wd -TRap=pmd[;i] [:sym_file] file_spec

wd is the program name for the Watcom Debugger.

-TRap=pmd[i] must be specified when debugging an application that has terminated and
produced a postmortem dump. The optional ";i" is specified when the
modification date of the original program file does not match the information
contained in the dumper file. It indicates that the symbolic debugging
information in the program file may be out-of-date. It instructs the Watcom
Debugger to ignore the date mismatch. Depending on the shell that you are
using, it may be necessary to place the option specification in quotation marks if
you include the optional ";i".

Example:
$ wd "-trap=pmd;i" myapp

sym_file is an optional symbolic information file specification. The specification must be
preceded by a colon (":"). When specifying a symbol file name, a path such as
"//5/etc/" may be included. For QNX, the default file suffix of the symbol file is
".sym".

file_spec is the file name of the dumper file to be loaded into memory. When specifying a
file name, a path such as "//5/etc/" may be included. If a path is omitted, the
Watcom Debugger will first attempt to locate the file in the current directory
and, if not successful, attempt to locate the file in the default dumper directory:
/usr/dumps.

Basically, the Watcom Debugger is fully functional when a postmortem dump is examined.
However, there are some operations which are not allowed. Among these are:

1. Task execution cannot be restarted using Go from the Run menu.

2. A register can be modified for the purposes of expression evaluation. You can
choose Go from the Run menu to restore the register contents to their original
postmortem state.

3. Memory cannot be modified.

4. Memory outside of regions owned by the program cannot always be examined.

5. I/O ports cannot be examined.

Debugging Under QNX 137

Operating System specifics

12.8.2 Search Order for Watcom Debugger Support Files under QNX

There are several supporting files provided with the Watcom Debugger. These files fall into
five categories.

1. Watcom Debugger command files (files with the ".dbg" suffix).

2. Watcom Debugger trap files (files with the ".trp" suffix).

3. Watcom Debugger parser files (files with the ".prs" suffix).

4. Watcom Debugger help files (files with the ".hlp" suffix).

5. Watcom Debugger symbolic debugging information files (files with the ".sym"
suffix).

The search order for Watcom Debugger support files is as follows:

1. the current directory,
2. the paths listed in the WD_PATH environment variable,
3. the path listed in the HOME environment variable, and, finally,
4. the "/usr/watcom/wd" directory.

You should note the following when using the remote debugging feature of the Watcom
Debugger. When the REMotefiles option is specified, the debugger also attempts to locate the
Watcom Debugger’s support files (command files, trap files, etc.) on the task machine.

138 Debugging Under QNX

Expressions

Expressions

140

13 Watcom Debugger Expression Handling

13.1 Introduction
The Watcom Debugger is capable of handling a wide variety of expressions. An expression is
a combination of operators and operands selected from application variables and names,
debugger variables, and constants. Expressions can be used in a large number of debugger
commands and dialogs. For example, the evaluated result of an expression may be displayed
by choosing New from the pop-up menu in the Watches window or by using the print
command.

The appropriate syntax of an expression, i.e., the valid sequence of operators and operands,
depends on the grammar of the language that is currently established. The Watcom Debugger
supports the grammars of the C, C++, and FORTRAN 77 languages. A grammar is selected
automatically by the debugger when tracing the execution of modules in an application. For
example, part of an application may be written in C, another part in C++, and another part in
FORTRAN 77. The modules must have been compiled by one of the WATCOM C, C++ or
FORTRAN 77 compilers. When tracing into a module written in one of these languages, the
debugger will automatically select the appropriate grammar. In addition to this automatic
selection, a particular grammar may be selected using the debugger Set LAnguage command.
The language currently selected can be determined using the SHow Set LAnguage command.

13.2 General Rules of Expression Handling
The debugger handles two types of expressions. The difference between the two types of
expressions is quite subtle. One is called an "expression" and things operate as you would
normally expect. This type of expression is used for all "higher" level operations such as
adding items to the Watches window. The other type is called an "address expression". It is
used whenever the debugger prompts for an address and in lower level commands such
Examine and Modify. If the notation for a particular command argument is <address>, it is
an address expression. If it ends in just "expr" then it is a normal expression. The difference
between the two forms lies in how they treat symbol names. In a normal expression the value
of a symbol is its rvalue, or contents. In an address expression, the value of a symbol is
(sometimes) its lvalue, or address.

General Rules of Expression Handling 141

Expressions

Consider the following case. You have a symbol sam at offset 100 and the word at that
location contains the value 15. If you enter sam into the watches window you expect the
value 15 to be printed and since the Watches window takes a normal expression that is what
you get. Now let us try it with the Breakpoint dialog. Enter sam in the address field. The
Breakpoint dialog uses the result of its expression as the address at which to set a breakpoint.
The Breakpoint dialog takes an address expression, and an implicit unary "&" operator is
placed in front of symbols. The debugger has a set of heuristics that it applies to determine
whether it should use the rvalue or lvalue of a symbol.

13.3 Language Independent Variables and Constants
The following sections describe conventions used in the debugger for identifying modules,
variables, line numbers, registers, etc.

13.3.1 Symbol Names

Regardless of the programming language that was used to code the modules of an application,
the names of variables and routines will be available to the debugger (provided that the
appropriate symbolic debugging information has been included with the application’s
execution module). The debugger does not restrict the way in which names are used in
expressions. A name could represent a variable but it could also represent the entry point into
a routine.

The syntax of a symbol name reference is quite complicated.

[[[image]@][module]@][routine_name.]symbol_name

Generally, an application will consist of many modules which were compiled separately. The
current image is the one containing the module which is currently executing. The current
module is the one containing the source lines currently under examination in the Source or
Assembly window. By default, the Source window’s title line contains the current module
name. The current routine is the one containing the source line at which execution is currently
paused.

The following are examples of references to symbol names.

142 Language Independent Variables and Constants

Watcom Debugger Expression Handling

Example:
symbol name
main
WinMain
FMAIN
printf
LIB$G OPEN
stdin

If the symbol does not exist in the current scope then it must be qualified with its routine
name. Generally, these are variables that are local to a particular routine.

Example:
routine name.symbol name
main.curr time
main.tyme
SUB1.X
SUB2.X

If the symbol is not externally defined and it does not exist in the current module then it may
be qualified with its module name. In the C and C++ programming languages, we can define
a variable that is global to a module but known only to that module ("static" storage class).

Example:
static char *NarrowTitle = { "Su Mo Tu We Th Fr Sa" };

In the above example, "NarrowTitle" is global to the module "calendar". If the current
module is not "calendar" then the module name can be used to qualify the symbol as shown in
the following example.

Example:
calendar@NarrowTitle

If the symbol is local to a routine that is not in the current module then it must be qualified
with its module name and routine name.

Example:
module name@routine name.symbol name
calendar@main.curr time
calendar@main.tyme
subs@SUB1.X
subs@SUB2.X

If the symbol is local to an image that is not in the current executable then it must be fully
qualified with the image name.

Language Independent Variables and Constants 143

Expressions

Example:
prog name@@routine name
prog name@module name@routine name
prog name@module name@routine name.symbol name
dll name@calendar@main.curr time
dll name@calendar@main.tyme
program@subs@SUB1.X
program@subs@SUB2.X

There is a special case for the primary executable image. This is the name of the program you
specified when you started the debugger. You can reference it by omitting the image name.
The following examples all refer to symbols in the primary executable image:

Example:
@@WinMain
@module@WinMain
@@routine.symbol

In the FORTRAN 77 programming language, all variables (arguments, local variables,
COMMON block variables) are available to the subprogram in which they are defined or
referenced. The same symbol name can be used in more than one subprogram. If it is a local
variable, it represents a different variable in each subprogram. If it is an argument, it may
represent a different variable in each subprogram. If it is a variable in a COMMON block, it
represents the same variable in each subprogram where the COMMON block is defined.

Example:
SUBROUTINE SUB1(X)
REAL Y
COMMON /BLK/ Z

.

.

.
END
SUBROUTINE SUB2(X)
REAL Y
COMMON /BLK/ Z

.

.

.
END

In the above example, "X" is an argument and need not refer to the same variable in the
calling subprogram.

144 Language Independent Variables and Constants

Watcom Debugger Expression Handling

Example:
CALL SUB1(A)
CALL SUB2(B)

The variable "Y" is a different variable in each of "SUB1" and "SUB2". The COMMON
block variable "Z" refers to the same variable in each of "SUB1" and "SUB2" (different
names for "Z" could have been used). To refer to "X", "Y", or "Z" in the subprogram
"SUB2", you would specify "SUB2.X", "SUB2.Y", or "SUB2.Z". If "SUB2" was in the
module "MOD" and it is not the current module, you would specify "MOD@SUB2.X",
"MOD@SUB2.Y", or "MOD@SUB2.Z".

Note: Global and local symbol name debugging information is included in an
executable image if you request it of the linker. However, local symbol
information must be present in your object files. The WATCOM C, C++ and
FORTRAN 77 compilers can include local symbol debugging information in
object files by specifying the appropriate compiler option. See "Preparing a
Program to be Debugged" on page 9.

13.3.2 Line Numbers

Regardless of the programming language that was used to code the modules of an application,
line number information identifying the start of executable statements will be available to the
debugger (provided that the appropriate symbolic debugging information has been included
with the application’s execution module). The debugger does not restrict the way in which
line number references are used in expressions. A line number represents the code address of
an executable statement in a routine. Not all line numbers represent executable statements;
thus some line numbers may not be valid in an expression. For example, source lines
consisting of comments do not represent executable statements.

The general format for a line number reference is:

[[image]@] [module_name] @ decimal_digits

The following are examples of references to executable statements.

Language Independent Variables and Constants 145

Expressions

Example:
@36
@@45
@51
@125
hello@9
@hello@9
prog@hello@9
otherprg@goodbye@9
puzzle@50
calendar@20
SUB1@30

If the line number does not exist in the current module, it must be qualified with its module
name. If it does not exist in the current image, it must be qualified with the image name. Line
numbers are not necessarily unique. For example, an executable statement could occur at line
number 20 in several modules. The module name can always be used to uniquely identify the
line 20 in which we are interested. In the above examples, we explicitly refer to line 20 in the
module "calendar". When the module name is omitted, the current module is assumed.

Note: Line number debugging information is included in an executable image if you
request it of the linker. However, line number information must be present in
your object files. The WATCOM C, C++ and FORTRAN 77 compilers can
include line number debugging information in object files by specifying the
appropriate compiler option. See "Preparing a Program to be Debugged" on
page 9. You can request line number debugging information when assembling
assembly language source files using Microsoft’s MASM Version 5. The "Zd"
option must be specified on the command line.

13.3.3 Constants

A constant can be arithmetic or character. Each constant has a data type associated with it.
Arithmetic constants consist of those constants whose data type is one of integer, real, or
complex (FORTRAN only). C treats character constants like arithmetic constants so they can
be used in arithmetic expressions. FORTRAN treats character constants as constants of type
CHARACTER so they cannot be used in arithmetic expressions.

13.3.3.1 Integer Constants

An integer constant is formed by a non-empty string of digits preceded by an optional radix
specifier. The digits are taken from the set of digits valid for the current radix. If the current
radix is 10 then the digits are ’0’ through ’9’. If the current radix is 16 then the digits are ’0’
through ’9’ and ’A’ through ’F’ or ’a’ through ’f’. See "The Options Dialog" on page 36.

146 Language Independent Variables and Constants

Watcom Debugger Expression Handling

The following are examples of integer constants.

Example:
123
57DE
1423
345
34565788

Radix specifiers may be defined by the user, but two are predefined by the debugger. 0x may
be defined to be a radix specifier for hexadecimal (base 16) numbers. 0n may be defined to be
a radix specifier for decimal (base 10) numbers

Example:
0x1234 hexadecimal
0n1234 decimal
255 decimal
0xff hexadecimal
0x1ADB hexadecimal
0n200 decimal
0x12fc0 hexadecimal

13.3.3.2 Real Constants

We first define a simple real constant as follows: an optional sign followed by an integer part
followed by a decimal point followed by a fractional part. The integer and fractional parts are
non-empty strings of digits. The fractional part can be omitted.

A real constant has one of the following forms.

(1) A simple real constant.

(2) A simple real constant followed by an E or e followed by an optionally signed
integer constant.

The optionally signed integer constant that follows the E is called the exponent. The value of
a real constant that contains an exponent is the value of the constant preceding the E
multiplied by the power of ten determined by the exponent.

The following are examples of real constants.

Language Independent Variables and Constants 147

Expressions

123.764
0.4352344
1423.34E12
+345.E-4
-0.4565788E3
2.E6
1234.

Note: The accepted forms of floating-point constants are a subset of that supported by
the FORTRAN 77 programming language. The debugger does not support
floating-point constants that begin with a decimal point (e.g., .4352344) or have
no decimal point (e.g., 2E6). However, both forms would be acceptable to a
FORTRAN compiler. Also, the debugger does not support double precision
floating-point constants where "D" is used instead of "E" for the exponent part
(e.g., 2D6, 2.4352344D6). All floating-point constants are stored internally by
the debugger in double precision format.

13.3.3.3 Complex Constant (FORTRAN Only)

A complex constant consists of a left parenthesis, followed by a real or integer constant
representing the real part of the complex constant, followed by a comma, followed by a real or
integer constant representing the imaginary part of the complex constant, followed by a right
parenthesis.

The following are examples of complex constants.

(1423.34E12, 3)
(+345, 4)

Complex constants will be accepted when the debugger’s currently established language is
FORTRAN. The language currently selected can be determined using the SHow Set
LAnguage command.

13.3.3.4 Character Constant (C Only)

In the C and C++ programming languages, a character constant consists of an apostrophe
followed by a single character followed by an apostrophe. The apostrophes are not part of the
datum. An apostrophe in a character datum represents one character, namely the apostrophe.
A character constant must have length 1.

The following are examples of character constants.

148 Language Independent Variables and Constants

Watcom Debugger Expression Handling

’A’
’e’
’’’

The C/C++ form of a character constant will be accepted when the debugger’s currently
established language is C or C++. The language currently selected can be determined using
the SHow Set LAnguage command.

13.3.3.5 Character String Constant (FORTRAN Only)

In the FORTRAN 77 programming language, a character constant consists of an apostrophe
followed by any string of characters followed by an apostrophe. The apostrophes are not part
of the datum. If an apostrophe is to appear as part of the datum it must be followed
immediately by another apostrophe. Note that blanks are significant. The length of the
character constant is the number of characters appearing between the delimiting apostrophes.
Consecutive apostrophes in a character datum represent one character, namely the apostrophe.
A character constant must not have length 0.

The following are examples of character constants.

’ABCDEFG1234567’
’There’’s always tomorrow’

The FORTRAN form of a character constant will be accepted when the debugger’s currently
established language is FORTRAN.

13.3.4 Memory References

In addition to referring to memory locations by symbolic name or line number, you can also
refer to them using a combination of constants, register names, and symbol names. In the
Intel 80x86 architecture, a memory reference requires a segment and offset specification.
When symbol names are used, these are implicit. The general form of a memory reference is:

[segment:]offset

When an offset is specified alone, the default segment value is taken from the CS, DS or SS
register depending on the circumstances.

Language Independent Variables and Constants 149

Expressions

13.3.5 Predefined Debugger Variables

The debugger defines a number of symbols which have special meaning. These symbols are
used to refer to the computer’s registers and other special variables.

General Purpose Registers
eax, ax, al, ah, ebx, bx, bl, bh, ecx, cx, cl, ch, edx, dx, dl, dh

Index Registers
esi, si, edi, di

Base Registers
esp, sp, ebp, bp

Instruction Pointer
eip, ip

Segmentation Registers
cs, ds, es, fs, gs, ss

Flags Registers
fl, fl.o, fl.d, fl.i, fl.s, fl.z, fl.a, fl.p, fl.c, efl, efl.o, efl.d, efl.i, efl.s, efl.z, efl.a, efl.p,
efl.c

8087 Registers
st0, st1, st2, st3, st4, st5, st6, st7

8087 Control Word
cw, cw.ic, cw.rc, cw.pc, cw.iem, cw.pm, cw.um, cw.om, cw.zm, cw.dm, cw.im

8087 Status Word
sw, sw.b, sw.c3, sw.st, sw.c2, sw.c1, sw.c0, sw.es, sw.sf, sw.pe, sw.ue, sw.oe,
sw.ze, sw.de, sw.ie

Miscellaneous Variables
dbg$32, dbg$bottom, dbgbp, dbgcode, dbgcpu, dbgctid, dbg$data,
dbg$etid, dbg$fpu, dbgip, dbgleft, dbg$monitor, dbg$os, dbgpid, dbgpsp,
dbg$radix, dbg$remote, dbg$right, dbg$sp, dbgtop, dbgnil, dbg$src,
dbg$loaded

The debugger permits the manipulation of register contents and special debugger variables
(e.g., dbg$32) using any of the operators described in this chapter. By default, these
predefined names are accessed just like any other variables defined by the user or the

150 Language Independent Variables and Constants

Watcom Debugger Expression Handling

application. Should the situation ever arise where the application defines a variable whose
name conflicts with that of one of these debugger variables, the module specifier dbg may
be used to resolve the ambiguity. For example, if the application defines a variable called cs
then dbg@cs can be specified to resolve the ambiguity. The "_dbg@" prefix indicates that
we are referring to a debugger defined symbol rather than an application defined symbol. See
"Predefined Symbols" on page 201.

13.3.6 Register Aggregates

There are times when a value may be stored in more than one register. For example, a 32-bit
"long" integer value may be stored in the register pair DX:AX. We require a mechanism for
grouping registers to represent a single quantity for use in expressions.

We define the term "register aggregate" as any grouping of registers to form a single unit. An
aggregate is specified by placing register names in brackets in order from most significant to
least significant. Any aggregate may be specified as long as it forms an 8, 16, 32 or 64-bit
quantity. The following are examples of some of the many aggregates that can be formed.

Example:
8-bit [al]
16-bit [ah al]
16-bit [bl ah]
16-bit [ax]
32-bit [dx ax]
32-bit [dh dl ax]
32-bit [dh dl ah al]
32-bit [ds di]
64-bit [ax bx cx dx]
64-bit [edx eax] (386/486/Pentium only)

In some cases, the specified aggregate may be equivalent to a register. For example, the
aggregates "[ah al]" and "[ax]" are equivalent to "ax".

The default type for 8-bit, 16-bit, and 32-bit aggregates is integer. The default type for 64-bit
aggregates is double-precision floating-point. To force the debugger into treating a 32-bit
aggregate as single-precision floating-point, the type coercion operator "[float]" may be used.

Language Independent Variables and Constants 151

Expressions

13.4 Operators for the C Grammar
The debugger supports most C operators and includes an additional set of operators for
convenience. The WATCOM C Language Reference manual describes many of these
operators.

The syntax for debugger expressions is similar to that of the C programming language.
Operators are presented in order of precedence, from lowest to highest. Operators on the
same line have the same priority.

Lowest Priority

Assignment Operators
= += -= *= /= %= &= |= ^= <<= >>=

Logical Operators
||
&&

Bit Operators
|
^
&

Relational Operators
== !=
< <= < >=

Shift Operators
<< >>

Arithmetic Operators
+ -
* / %

Unary Operators
+ - ~ ! ++ -- & * %
sizeof unary expr
sizeof(type name)
(type name) unary expr
[type name] unary expr
?

Binary Address Operator
:

Highest Priority

Parentheses can be used to order the evaluation of an expression.

In addition to the operators listed above, a number of primary expression operators are
supported. These operators are used in identifying the object to be operated upon.

152 Operators for the C Grammar

Watcom Debugger Expression Handling

[] subscripting, substringing

() function call

. field selection

-> field selection using a pointer

The following sections describe the operators presented above.

13.4.1 Assignment Operators for the C Grammar

= Assignment: The value on the right is assigned to the object on the left.

+= Additive assignment: The value of the object on the left is augmented by the
value on the right.

-= Subtractive assignment: The value of the object on the left is reduced by the
value on the right.

*= Multiplicative assignment: The value of the object on the left is multiplied by
the value on the right.

/= Division assignment: The value of the object on the left is divided by the value
on the right.

%= Modulus assignment: The object on the left is updated with MOD(left,right).
The result is the remainder when the value of the object on the left is divided by
the value on the right.

&= Bit-wise AND: The bits in the object on the left are ANDed with the bits of the
value on the right.

|= Bit-wise inclusive OR: The bits in the object on the left are ORed with the bits
of the value on the right.

^= Bit-wise exclusive OR: The bits in the object on the left are exclusively ORed
with the bits of the value on the right.

<<= Left shift: The bits in the object on the left are shifted to the left by the amount
of the value on the right.

Operators for the C Grammar 153

Expressions

>>= Right shift: The bits in the object on the left are shifted to the right by the
amount of the value on the right. If the object on the left is described as
unsigned, the vacated high-order bits are zeroed. If the object on the left is
described as signed, the sign bit is propagated through the vacated high-order
bits. The debugger treats registers as unsigned items.

13.4.2 Logical Operators for the C Grammar

&& Logical conjunction: The logical AND of the value on the left and the value on
the right is produced. If either of the values on the left or right is equal to 0 then
the result is 0; otherwise the result is 1.

|| Logical inclusive disjunction: The logical OR of the value on the left and the
value on the right is produced. If either of the values on the left or right is not
equal to 0 then the result is 1; otherwise the result is 0. If the value on the left is
not equal to 0 then the expression on the right is not evaluated (this is known as
short-circuit expression evaluation).

13.4.3 Bit Operators for the C Grammar

& Bit-wise AND: The bits of the value on the left and the value on the right are
ANDed.

| Bit-wise OR: The bits of the value on the left and the value on the right are
ORed.

^ Bit-wise exclusive OR: The bits of the value on the left and the value on the
right are exclusively ORed.

13.4.4 Relational Operators for the C Grammar

== Equal: If the value on the left is equal to the value on the right then the result is
1; otherwise the result is 0.

!= Not equal: If the value on the left is not equal to the value on the right then the
result is 1; otherwise the result is 0.

< Less than: If the value on the left is less than the value on the right then the
result is 1; otherwise the result is 0.

154 Operators for the C Grammar

Watcom Debugger Expression Handling

<= Less than or equal: If the value on the left is less than or equal to the value on
the right then the result is 1; otherwise the result is 0.

> Greater than: If the value on the left is greater than the value on the right then
the result is 1; otherwise the result is 0.

>= Greater than or equal: If the value on the left is greater than or equal to the
value on the right then the result is 1; otherwise the result is 0.

13.4.5 Arithmetic/Logical Shift Operators for the C Grammar

<< Left shift: The bits of the value on the left are shifted to the left by the amount
described by the value on the right.

>> Right shift: The bits of the value on the left are shifted to the right by the
amount described by the value on the right. If the object on the left is described
as unsigned, the vacated high-order bits are zeroed. If the object on the left is
described as signed, the sign bit is propagated through the vacated high-order
bits. The debugger treats registers as unsigned items.

13.4.6 Binary Arithmetic Operators for the C Grammar

+ Addition: The value on the right is added to the value on the left.

_ Subtraction: The value on the right is subtracted from the value on the left.

* Multiplication: The value on the left is multiplied by the value on the right.

/ Division: The value on the left is divided by the value on the right.

% Modulus: The modulus of the value on the left with respect to the value on the
right is produced. The result is the remainder when the value on the left is
divided by the value on the right.

Operators for the C Grammar 155

Expressions

13.4.7 Unary Arithmetic Operators for the C Grammar

+ Plus: The result is the value on the right.

_ Minus: The result is the negation of the value on the right.

~ Bit-wise complement: The result is the bit-wise complement of the value on the
right.

! Logical complement: If the value on the right is equal to 0 then the result is 1;
otherwise it is 0.

++ Increment: Both prefix and postfix operators are supported. If the object is on
the right, it is pre-incremented by 1 (e.g., ++x). If the object is on the left, it is
post-incremented by 1 (e.g., x++).

_ _ Decrement: Both prefix and postfix operators are supported. If the object is on
the right, it is pre-decremented by 1 (e.g., --x). If the object is on the left, it is
post-decremented by 1 (e.g., x--).

& Address of: The result is the address (segment:offset) of the object on the right
(e.g., &main).

* Points: The result is the value stored at the location addressed by the value on
the right (e.g., *(ds:100), *string.loc). In the absence of typing information, a
near pointer is produced. If the operand does not have a segment specified, the
default data segment (DGROUP) is assumed.

(SS:00FE) = FFFF

var: (SS:0100) = 0152
(SS:0102) = 1240
(SS:0104) = EEEE

% Value at address: The result is the value stored at the location addressed by the
value on the right (e.g., %(ds:100), %string.loc). In the absence of typing
information, a far pointer is produced. If the operand does not have a segment
specified, the default data segment (DGROUP) is assumed.

(SS:00FE) = FFFF

var: (SS:0100) = 0152
(SS:0102) = 1240
(SS:0104) = EEEE

Note that this operator is not found in the C or C++ programming languages.

156 Operators for the C Grammar

Watcom Debugger Expression Handling

13.4.8 Special Unary Operators for the C Grammar

sizeof unary_expression

Example:
sizeof tyme
sizeof (*tyme)

sizeof(type_name)

Example:
sizeof(struct tm)

(type_name) unary_expression The type conversion operator (type_name) is used to convert
an item from one type to another. The following describes the syntax of
"type_name".

type_name ::= type_spec { ["near" | "far" | "huge"] "*" }
type_spec ::= typedef_name

| "struct" structure_tag
| "union" union_tag
| "enum" enum_tag
| scalar_type { scalar_type }

scalar_type ::= "char" | "int" | "float" | "double"
| "short" | "long" | "signed" | "unsigned"

Example:
(float) 4
(int) 3.1415926

[type_name] unary_expression You can force the debugger to treat a memory reference as a
particular type of value by using a type coercion operator. A type specification
is placed inside brackets as shown above. The basic types are char (character, 8
bits), short (short integer, 16 bits), long (long integer, 32 bits), float
(single-precision floating-point, 32 bits), and double (double-precision
floating-point, 64 bits). Unless qualified by the short or long keyword, the int
type will be 16 bits in 16-bit applications and 32 bits in 32-bit applications (386,
486 and Pentium systems). The character, short integer and long integer types
may be treated as signed or unsigned items. The default for the character type is
unsigned. The default for the integer types is signed.

Operators for the C Grammar 157

Expressions

Example:
[char] (default unsigned)
[signed char]
[unsigned char]
[int] (default is signed)
[short] (default is signed)
[short int] (default is signed)
[signed short int]
[long] (default is signed)
[long int] (default is signed)
[signed long]
[unsigned long int]
[float]
[double]

Note that it is unnecessary to specify the int keyword when short or long are
specified.

? Existence test: The "?" unary operator may be used to test for the existence of a
symbol.

Example:
?id

The result of this expression is 1 if "id" is a symbol known to the debugger and 0
otherwise. If the symbol does not exist in the current scope then it must be
qualified with its module name. Automatic symbols exist only in the current
function.

13.4.9 Binary Address Operator for the C Grammar

: Memory locations can be referenced by using the binary ":" operator and a
combination of constants, register names, and symbol names. In the Intel 80x86
architecture, a memory reference requires a segment and offset specification. A
memory reference using the ":" operator takes the following form:

segment:offset

The elements segment and offset can be expressions.

Example:
(ES):(DI+100)
(SS):(SP-20)

158 Operators for the C Grammar

Watcom Debugger Expression Handling

13.4.10 Primary Expression Operators for the C Grammar

[] Elements of an array can be identified using subscript expressions. Consider the
following 3-dimensional array defined in the "C" language.

Example:
char *ProcessorType[2][4][2] =

{ { { "Intel 8086", "Intel 8088" },
{ "Intel 80186", "Intel 80188" },
{ "Intel 80286", "unknown" },
{ "Intel 80386", "unknown" } },

{ { "NEC V30", "NEC V20" },
{ "unknown", "unknown" },
{ "unknown", "unknown" },
{ "unknown", "unknown" } } };

This array can be viewed as two layers of rectangular matrices of 4 rows by 2
columns. The array elements are all pointers to string values.

By using a subscript expression, specific slices of an array can be displayed. To
see only the values of the first layer, the following expression can be issued.

Example:
processortype[0]

To see only the first row of the first layer, the following expression can be
issued.

Example:
processortype[0][0]

To see the second row of the first layer, the following command can be issued.

Example:
processortype[0][1]

To see the value of a specific entry in a matrix, all the indices can be specified.

Example:
processortype[0][0][0]
processortype[0][0][1]
processortype[0][1][0]

Operators for the C Grammar 159

Expressions

() The function call operators appear to the right of a symbol name and identify a
function call in an expression. The parentheses can contain arguments.

Example:
ClearScreen()
PosCursor(10, 20)
Line(15, 1, 30, ’-’, ’+’, ’-’)

. The "." operator indicates field selection in a structure. In the following
example, tyme2 is a structure and tm year is a field in the structure.

Example:
tyme2.tm year

-> The "->" operator indicates field selection when using a pointer to a structure.
In the following example, tyme is the pointer and tm year is a field in the
structure to which it points.

Example:
tyme->tm year

13.5 Operators for the C++ Grammar
Debugger support for the C++ grammar includes all of the C operators described in the
previous section entitled "Operators for the C Grammar" on page 152. In addition to this, the
debugger supports a variety of C++ operators which are described in the C++ Programming
Language manual.

Perhaps the best way to illustrate the additional capabilities of the debugger’s support for the
C++ grammar is by way of an example. The following C++ program encompasses the
features of C++ that we will use in our debugging example.

Example:

160 Operators for the C++ Grammar

Watcom Debugger Expression Handling

// DBG EXAM.C: C++ debugging example program

struct BASE {
int a;
BASE() : a(0) {}
~BASE(){}
BASE & operator =(BASE const &s)
{

a = s.a;
return *this;

}
virtual void foo()
{

a = 1;
}

};

struct DERIVED : BASE {

int b;
DERIVED() : b(0) {}
~DERIVED() {}
DERIVED & operator =(DERIVED const &s)
{

a = s.a;
b = s.b;
return *this;

}
virtual void foo()
{

a = 2;
b = 3;

}
virtual void foo(int)
{
}

};

void use(BASE *p)
{

p->foo();
}

Operators for the C++ Grammar 161

Expressions

void main()
{

DERIVED x;
DERIVED y;

use(&x);
y = x;

}

Compile and link this program so that the most comprehensive debugging information is
included in the executable file.

13.5.1 Ambiguity Resolution in the C++ Grammar

Continuing with the example of the previous section, we can step into the call to use and up
to the p->foo() function call. Try to set a breakpoint at foo.

You will be presented with a window containing a list of "foo" functions to choose from since
the reference to foo at this point is ambiguous. Select the one in which you are interested.

You may also have observed that, in this instance, p is really a pointer to the variable x which
is a DERIVED type. To display all the fields of x, you can type cast it as follows.

Example:
*(DERIVED *)p

13.5.2 The "this" Operator for the C++ Grammar

Continuing with the example of the previous sections, we can step into the call to f->foo()
and up to the b=3 statement. You can use the "this" operator as illustrated in the following
example.

Example:
this->a
*this

162 Operators for the C++ Grammar

Watcom Debugger Expression Handling

13.5.3 "operator" Functions in the C++ Grammar

Continuing with the example of the previous sections, we can set breakpoints at C++
operators using expressions similar to the following:

Example:
operator =

DERIVED & operator =(DERIVED const &s)
{

a = s.a;
b = s.b;
return *this;

}

13.5.4 Scope Operator "::" for the C++ Grammar

We can use the scope operator "::" to identify what it is that we wish to examine. Continuing
with the example of the previous sections, we can enter an address like:

base::foo

In some cases, this also helps to resolve any ambiguity. The example above permits us to set
a breakpoint at the source code for the function foo in the class BASE.

virtual void foo()
{

a = 1;
}

Here are some more interesting examples:

derived::foo
derived::operator =

The first of these two examples contains an ambiguous reference so a prompt window is
displayed to resolve the ambiguity.

Operators for the C++ Grammar 163

Expressions

13.5.5 Constructor/Destructor Functions in the C++ Grammar

We can also examine the constructor/destructor functions of an object or class. Continuing
with the example of the previous sections, we can enter expressions like:

Example:
base::base
base::~base

The examples above permit us to reference the source code for the constructor and destructor
functions in the class BASE.

13.6 Operators for the FORTRAN Grammar
The debugger supports most FORTRAN 77 operators and includes an additional set of
operators for convenience. The additional operators are patterned after those available in the
C programming language.

The grammar that the debugger supports is close to that of the FORTRAN 77 language but
there are a few instances where space characters must be used to clear up any ambiguities.
For example, the expression

1.eq.x

will result in an error since the debugger will form a floating-point constant from the "1."
leaving the string "eq.x". If we introduce a space character after the "1" then we clear up the
ambiguity.

1 .eq.x

Unlike FORTRAN, the parser in the debugger treats spaces as significant characters. Thus
spaces must not be introduced in the middle of symbol names, constants, multi-character
operators like .EQ. or //, etc.

Operators are presented in order of precedence, from lowest to highest. Operators on the
same line have the same priority.

164 Operators for the FORTRAN Grammar

Watcom Debugger Expression Handling

Lowest Priority

Assignment Operators
= += -= *= /= %= &= |= ^= <<= >>=

Logical Operators
.EQV. .NEQV.
.OR.
.AND.
.NOT.

Bit Operators
|
^
&

Relational Operators
.EQ. .NE. .LT. .LE. .GT. .GE.

Shift and Concatenation Operators
<< >> //

Arithmetic Operators
+ -
* / %
** (unsupported)

Unary Operators
+ -
~ ++ -- & * %
[type name] unary expr
?

Binary Address Operator
:

Highest Priority

Parentheses can be used to order the evaluation of an expression.

In addition to the operators listed above, a number of primary expression operators are
supported. These operators are used in identifying the object to be operated upon.

() subscripting, substringing, or function call

. field selection

-> field selection using a pointer

The following built-in functions may be used to convert the specified argument to a particular
type.

Operators for the FORTRAN Grammar 165

Expressions

INT() conversion to integer
REAL() conversion to real
DBLE() conversion to double-precision
CMPLX() conversion to complex
DCMPLX() conversion to double-precision complex

The following sections describe the operators presented above.

13.6.1 Assignment Operators for the FORTRAN Grammar

= Assignment: The value on the right is assigned to the object on the left.

+= Additive assignment: The object on the left is augmented by the value on the
right.

-= Subtractive assignment: The object on the left is reduced by the value on the
right.

*= Multiplicative assignment: The object on the left is multiplied by the value on
the right.

/= Division assignment: The object on the left is divided by the value on the right.

%= Modulus assignment: The object on the left is updated with MOD(left,right).
The result is the remainder when the value of the object on the left is divided by
the value on the right.

&= Bit-wise AND: The bits in the object on the left are ANDed with the bits of the
value on the right.

|= Bit-wise inclusive OR: The bits in the object on the left are ORed with the bits
of the value on the right.

^= Bit-wise exclusive OR: The bits in the object on the left are exclusively ORed
with the bits of the value on the right.

<<= Left shift: The bits in the object on the left are shifted to the left by the amount
of the value on the right.

>>= Right shift: The bits in the object on the left are shifted to the right by the
amount of the value on the right. If the object on the left is described as
unsigned, the vacated high-order bits are zeroed. If the object on the left is

166 Operators for the FORTRAN Grammar

Watcom Debugger Expression Handling

described as signed, the sign bit is propagated through the vacated high-order
bits. The debugger treats registers as unsigned items.

13.6.2 Logical Operators for the FORTRAN Grammar

.EQV. Logical equivalence: The logical equivalence of the value on the left and the
value on the right is produced.

.NEQV. Logical non-equivalence: The logical non-equivalence of the value on the left
and the value on the right is produced.

.OR. Logical inclusive disjunction: The logical OR of the value on the left and the
value on the right is produced.

.AND. Logical conjunction: The logical AND of the value on the left and the value on
the right is produced.

.NOT. Logical negation: The logical complement of the value on the right is produced.

13.6.3 Bit Operators for the FORTRAN Grammar

| Bit-wise OR: The bits of the value on the left and the value on the right are
ORed.

^ Bit-wise exclusive OR: The bits of the value on the left and the value on the
right are exclusively ORed.

& Bit-wise AND: The bits of the value on the left and the value on the right are
ANDed.

13.6.4 Relational Operators for the FORTRAN Grammar

.EQ. Equal: If the value on the left is equal to the value on the right then the result is
1; otherwise the result is 0.

.NE. Not equal: If the value on the left is not equal to the value on the right then the
result is 1; otherwise the result is 0.

.LT. Less than: If the value on the left is less than the value on the right then the
result is 1; otherwise the result is 0.

Operators for the FORTRAN Grammar 167

Expressions

.LE. Less than or equal: If the value on the left is less than or equal to the value on
the right then the result is 1; otherwise the result is 0.

.GT. Greater than: If the value on the left is greater than the value on the right then
the result is 1; otherwise the result is 0.

.GE. Greater than or equal: If the value on the left is greater than or equal to the
value on the right then the result is 1; otherwise the result is 0.

13.6.5 Arithmetic/Logical Shift Operators for the FORTRAN Grammar

<< Left shift: The bits of the value on the left are shifted to the left by the amount
described by the value on the right.

>> Right shift: The bits of the value on the left are shifted to the right by the
amount described by the value on the right. If the object on the left is described
as unsigned, the vacated high-order bits are zeroed. If the object on the left is
described as signed, the sign bit is propagated through the vacated high-order
bits. The debugger treats registers as unsigned items.

13.6.6 Concatenation Operator for the FORTRAN Grammar

// String concatenation: The concatenation of the character string value on the left
and right is formed.

13.6.7 Binary Arithmetic Operators for the FORTRAN Grammar

+ Addition: The value on the right is added to the value on the left.

_ Subtraction: The value on the right is subtracted from the value on the left.

* Multiplication: The value on the left is multiplied by the value on the right.

/ Division: The value on the left is divided by the value on the right.

% Modulus: The modulus of the value on the left with respect to the value on the
right is produced. The result is the remainder when the value on the left is
divided by the value on the right.

** Exponentiation: This operation is not supported by the debugger.

168 Operators for the FORTRAN Grammar

Watcom Debugger Expression Handling

13.6.8 Unary Arithmetic Operators for the FORTRAN Grammar

+ Plus: The result is the value on the right.

_ Minus: The result is the negation of the value on the right.

~ Bit-wise complement: The result is the bit-wise complement of the value on the
right.

++ Increment: Both prefix and postfix operators are supported. If the object is on
the right, it is pre-incremented by 1 (e.g., ++x). If the object is on the left, it is
post-incremented by 1 (e.g., x++).

_ _ Decrement: Both prefix and postfix operators are supported. If the object is on
the right, it is pre-decremented by 1 (e.g., --x). If the object is on the left, it is
post-decremented by 1 (e.g., x--).

& Address of: The result is the address (segment:offset) of the object on the right
(e.g., &main).

* Points: The result is the value stored at the location addressed by the value on
the right (e.g., *(ds:100), *string.loc). In the absence of typing information, the
value on the right is treated as a pointer into the default data segment
(DGROUP) and a near pointer is produced.

(SS:00FE) = FFFF

var: (SS:0100) = 0152
(SS:0102) = 1240
(SS:0104) = EEEE

% Value at address: The result is the value stored at the location addressed by the
value on the right (e.g., %(ds:100), %string.loc). In the absence of typing
information, the value on the right is treated as a pointer into the default data
segment (DGROUP) and a far pointer is produced.

(SS:00FE) = FFFF

var: (SS:0100) = 0152
(SS:0102) = 1240
(SS:0104) = EEEE

Note that this operator is not found in the FORTRAN 77 programming
language.

Operators for the FORTRAN Grammar 169

Expressions

13.6.9 Special Unary Operators for the FORTRAN Grammar

? Existence test: The "?" unary operator may be used to test for the existence of a
symbol.

?id

The result of this expression is 1 if "id" is a symbol known to the debugger and 0
otherwise. If the symbol does not exist in the current scope then it must be
qualified with its module name. Automatic symbols exist only in the current
subprogram.

13.6.10 Binary Address Operator for the FORTRAN Grammar

: Memory locations can be referenced by using the binary ":" operator and a
combination of constants, register names, and symbol names. In the Intel 80x86
architecture, a memory reference requires a segment and offset specification. A
memory reference using the ":" operator takes the following form:

segment:offset

The elements segment and offset can be expressions.

Example:
(ES):(DI+100)
(SS):(SP-20)

13.6.11 Primary Expression Operators for the FORTRAN Grammar

() Elements of an array can be identified using subscript expressions.

. The "." operator indicates field selection in a structure. This operator is useful in
mixed language applications where part of the application is written in the C or
C++ programming language. In the following example, tyme2 is a structure
and tm year is a field in the structure.

tyme2.tm year

-> The "->" operator indicates field selection when using a pointer to a structure.
This operator is useful in mixed language applications where part of the
application is written in the C or C++ programming language. In the following

170 Operators for the FORTRAN Grammar

Watcom Debugger Expression Handling

example, tyme is the pointer and tm year is a field in the structure to which it
points.

tyme->tm year

Operators for the FORTRAN Grammar 171

Expressions

172 Operators for the FORTRAN Grammar

Appendices

Appendices

174

Debugger Commands

A. Debugger Commands

This section describes the syntax of debugger commands as well as a description of each of
the debugger commands.

A.1 Syntax Definitions
A debugger command may contain any of the following syntax elements:

• A word in angle brackets, like <anything> is a defined term. Its definition will appear
after the syntax description of the command.

• [x] indicates that "x" is an optional item. It may or may not be included in the
command.

• [x|y|z] indicates that on of x, y or z should be included in the command.

• [x [x [...]]] indicates that x may be repeated zero or more times in the command.

• CApital indicates that ca,cap,capi,... are accepted short forms for the command
"capital".

• (GUI only) indicates that this command is only available in a GUI debugger.

• (character-based) indicates that this command is only available in a character mode
debugger.

• <expr> indicates an expression. These may include any of the variables, etc in the
program being debugged, and are evaluated in the current program context. See
"Watcom Debugger Expression Handling" on page 141.

• <integer> is an integer constant

• <intexpr> is an an expression which evaluates to an integral value. See "Watcom
Debugger Expression Handling" on page 141.

Syntax Definitions 175

Appendices

• <command> is any debugger command or group of debugger commands.

You can group debugger commands with braces and separate them with semi-colons.
The resulting compound command may be considered as an atomic command.

{<command>;<command>;<command>}

• <address> is any expression which evaluates to an address. See "Watcom Debugger
Expression Handling" on page 141.

• <string> is a string of text, optionally enclosed in braces. For example,

this is a string
{so is this}

• <wndname> is the name of a window. Valid window names (with acceptable short
forms indicated in capitals) are:

• ASsembly
• ALl
• BReak
• Calls
• Watch
• FIle
• FPu
• FUnctions
• FILEScope
• LOCals
• LOG
• MEmory
• MOdules
• Register
• SOurce
• STack
• Thread
• IO
• Globals
• Variable
• BInary
• IMage
• GLobalfunctions
• Accelerators
• TMPFile
• REPlay
• CUrrent

176 Syntax Definitions

Debugger Commands

• <file> represents any valid operating system file name. For example,

c:\autoexec.bat

• <path> represents any valid operating system directory path. For example,

c:\dir1\dir2

A.2 Command Summary
A summary of each command follows.

A.2.1 Accelerate

This command behaves as if a menu item from the main menu was selected:

Accelerate main <menu> {<menu string>}

This command behaves as if the named menu item in the floating pop-up menu for the current
window was selected:

Accelerate {<menu string>}

<menu> the string appearing on the main menu bar (File, Run, Break, Code, etc)

<menu_string>
is enough of the text appearing in a menu to uniquely identify it.

For example:

accelerate main run {until return}

behaves as if "Until return" is selected from the run menu

accelerate {Home}

behaves as if "home" were picked from the floating pop-up menu of the current window.

Command Summary 177

Appendices

A.2.2 Break

This command prints a list of all breakpoints into the log window:

Break

This command sets a break point. See the section entitled "Breakpoints" on page 85 for
details about breakpoint operation.

Break [|/Set|/Byte|/Word|/DWord|/Modify]

<address> [{<do command>} [{ <condition> } [<countdown>]]]

This command deactivates a breakpoint:

Break/Deactivate <brkid>

This command enables a breakpoint:

Break/Activate <brkid>

This command clears a breakpoint:

Break/Clear <brkid>

This command toggles a breakpoint through the active/inactive/deleted states:

Break/Toggle <brkid>

This command turns on the resume option in the breakpoint:

Break/Resume <brkid>

This command turns off the resume option in the breakpoint:

Break/UnResume <brkid>

The Break options are:

/Set (default)
the breakpoint triggers when <address> is executed

/Byte the breakpoint triggers when the byte at <address> is modified
/Word the breakpoint triggers when the word at <address> is modified
/DWord the breakpoint triggers when the double word at <address> is modified
/Modify the breakpoint triggers when integer at <address> is modified
<condition> an expression that must be true (non-zero value) before the breakpoint stops

program execution

178 Command Summary

Debugger Commands

<countdown>
an integer. The breakpoint will not stop program execution until <countdown>
is decremented to zero.

Note: If you specify both <condition> and <countdown>, <countdown>
decrements only when <condition> evaluates to true.

<do_command>
a command that is executed each time the breakpoint stops program execution

<brkid> option can be three possible values:

<address> Perform the operation on breakpoint with the given address.

* Perform the operation on all breakpoints.

#<integer> Names a breakpoint by its index. This index can be discovered on
the title line of the Breakpoint dialog.

Some examples of the break command and a description follow:

This command sets a breakpoint at "foo" the 20th time that i equals 10. When this occurs ’do
j7’ is executed:

Break /Set foo {do j7} {i10} 20

This command clears the breakpoint at foo:

Break /Clear foo

This command activates breakpoint #1:

Break /Activate #1

This command deactivates all breakpoints:

Break /Deactivate *

A.2.3 Call

Use the Call command to call a routine. The Call command options are:

Call [/Far|/Interrupt|/Near]

<address>
[([<parm>[,<parm>[...]]])] [/|<printlist>]

This command calls the routine at <address> with parameters.

Command Summary 179

Appendices

/Far Use a far call instruction.

/Near Use a near call instruction.

/Interrupt Call the routine as if it were an interrupt handler.

<parm> is [/<location>] <expr>

<location> is [/|<regset>]

/ means to put the parm on the stack.

/<regset> means to put the parm into the named registers.

<regset> is a register aggregate. See "Watcom Debugger Expression Handling"
on page 141.

<printlist> See the print command for details.

Some examples of the Call command follow: This command calls the function foo:

call foo

This command calls the function bar passing the parameters 1, 2, and 3:

call bar(1,2,3)

This command calls foo putting 1 on the stack, 2 in AX and 3 in CX:BX printing out the value
of AX and DX in decimal and hexadecimal respectively on return:

call /near foo(// 1, /ax 2, /[cx bx] 3) {%d %x} ax,dx

The Call command only uses very basic symbolic information - it’s designed that way so that
it can work even when no symbolic information is available. This has a number of
implications. The first is that the debugger pays no attention to any information on where
parameters are stored. For example, in 32-bit applications, unless explictly instructed
otherwise, the first parm is placed in EAX, the second in EDX, and so on (as defined by the
"set call" command). That means that you have to do something like:

call foo(// &a, // 3)

to get things on to the stack. This leads to a second, very important consideration.

The debugger has no idea of the memory model that the program is compiled in (recall that
the 32-bit compiler does support large memory models and far pointers, even if we don’t
supply versions of the libraries for it). That means that the debugger has no idea on whether

180 Command Summary

Debugger Commands

the address of a symbol should be far or near. It always assumes far, since that never loses
information. A far pointer would be truncated to a near pointer when moved into a 32-bit
register like EAX but not so when pushed onto the stack. In this case, // &a and // 3
cause 48-bit far pointers to be pushed onto the stack (they are actually pushed as 64 bits for
alignment reasons). Thus the pointer to b is in the wrong place for the routine to access it
(assuming it is expecting near pointers) and this will likely cause a task exception. To avoid
this problem and properly pass arguments to the routine, you need to do the following:

call foo(// (void near *)&a, // (void near *)3)

This forces the debugger to push near pointers onto the stack.

Similar considerations apply for the 16-bit case.

A.2.4 CAPture

Use the Capture command to execute a command and put the resulting program output into a
window. The format of the command follows:

CAPture <command>

For example, this command calls a routine, foo, and puts its output into a debugger window.

capture call foo

A.2.5 COnfigfile

COnfigfile

Used by the debugger to save and restore the configuration. When "configfile" appears in a
command file, it identifies that file as the default configuration file. The debugger will
overwrite the command file when autosaving the current configuration. Also, the name of this
file is displayed in the filename field when the "Save Setup" dialog initially appears.

If more than one file is encountered containing the "configfile" command, the last one seen is
used to establish the configuration file name.

A.2.6 Display

The display command allows you to open any window. The general Display command is:

Display <wndname> [/Open|/Close|/New|/MInimize|/MAximize|/Restore]
[<ord>,<ord>,<ord>,<ord>]

Command Summary 181

Appendices

This command causes the debugger screen to repaint:

Display

This command displays the toolbar as either fixed (default) or floating:

Display TOolbar [/Open] [/FLoating/Fixed] [<ord>]

This command closes the toolbar:

Display TOolbar [/Close]

This command opens the status line:

Display Status [/Open]

This command closes the status line:

Display Status /Close

This command brings a window to the front:

Display <wndname>

The options for the Display command follow:

<ord> The height to be used for toolbar buttons.

<ord>,<ord>,<ord>,<ord>
These are the x and y coordinates of the top left corner, and the width and the
height of the window respectively. 0,0,10000,10000 is a window covering the
entire screen.

/Open Open a new window or resize an existing one.

/New Open a new window regardless of an existing one.

/Close Close the window.

/MInimize Iconize the window.

/MAximize Make the window full screen size.

/REstore Restore a window from a minimize or maximize.

Some examples of the display command follow: This command opens a register window in
the top left quarter of the screen:

182 Command Summary

Debugger Commands

display register /open 0,0,5000,5000

This command minimizes the source window if it is open:

display source /minimize

A.2.7 DO (or /)

Use the DO command to evaluate an arbitrary C/C++ or FORTRAN expression. The format
of the command is:

DO <expr>

For example:

DO i = 10

A.2.8 ERror

Use the Error command to display a string as an error message. The format of the command
is:

ERror <string>

For example:

error {An error has been detected}

A.2.9 Examine

Use the Examine command to examine memory at a specific address.

Examine [/<type>] [<address>] [,<follow> [,<len>]]

where "<type>" is one of

Command Summary 183

Appendices

Byte
Word
Dword
Qword
Char
Short
Long

int64
Unsigned Char
Unsigned Short
Unsigned Long
Unsigned int64
0:16 Pointer
16:16 Pointer
0:32 Pointer
16:32 Pointer
Float
Double
Extended Float

To show an assembly window at a specific address:

Examine /Assembly [<address>]

To show a source window at a specific address

Examine /Source [<address>]

To add an address to the I/O window as a byte, word, or dword:

Examine [/IOByte|/IOWord|/IODword] [<address>]

The options for the Examine command follow:

/<type> where "<type>" is one of Byte, Word, Dword, Qword, Char, Short,
Long, int64, Unsigned Char, Unsigned Short,
Unsigned Long, Unsigned int64, 0:16 Pointer,
16:16 Pointer, 0:32 Pointer, 16:32 Pointer, Float,
Double, or Extended Float. Set the initial display type of the memory
window.

/IOByte /IOWord /IODword
Set the initial display type of the line in the I/O window.

<address> the address to examine.

<follow> an expression which will be used if the memory window’s Repeat function is
chosen.

184 Command Summary

Debugger Commands

<len> an integer expression indicating the length of memory to examine.

For example, this command opens a memory window positioned at the address of "foo". The
initial display type will be 2 byte words. If the Repeat menu item is used, it will follow a near
pointer 4 bytes past the beginning of the window *(.+$). The window will display 16 bytes of
data at a time:

examine /word foo,*(.+4),16

A.2.10 Flip

Use the Flip command to configure screen flipping. See the section entitled "The Options
Dialog" on page 36 for details

Flip ON
Flip OFf

A.2.11 FOnt

Use the Font command to set the font for the specified window. The command is:

FOnt <wndname> <fontinfo>

<wndname> the name of the affected window

<fontinfo> operating system specific font data.

A.2.12 Go

Use the Go command to start or continue program execution. Execution then resumes at the
specified address or at the location defined by the current contents of the CS:IP or CS:EIP
register pair. The format of the Go command is:

Go [/Until] [/Keep] [/Noflip] [[<start>,]<stop>]

The options are:

/Until skips breakpoints until the specified stop address is reached.

/Keep allows you to keep a previous temporary breakpoint. If you keep the previous
breakpoint you cannot create a new one.

Command Summary 185

Appendices

/Noflip keeps the debugger from flipping to the application’s screen.

<start> the <address> at which to start execution (optional).

<stop> the <address> at which to stop execution.

Some examples of the Go command are:

This command will resume execution until function "foo" is executed without flipping to the
application screen:

go /noflip foo

This command starts execution at "foo" and runs until "bar" is executed.

go foo,bar

A.2.13 Help

Bring up the help screen:

Help

A.2.14 HOok

Use the Hook command to execute a command when a defined event occurs. The format of
the Hook command is:

HOok <event> <command>

<event> can be any of the following:

PROGStart a program is loaded

PROGEnd a program terminates

DLLStart a DLL is loaded

DLLEnd a DLL is unloaded

EXECStart program execution is beginning

EXECEnd program execution is stopped

186 Command Summary

Debugger Commands

Sourceinfo the current location being examined has debugging information

Assemblyinfo
the current location being examined has no debugging information

Modulechange
the current location being examined has changed modules

This example causes the locals and source window to come to the front whenever a region
with symbolic debugging information is entered:

hook sourceinfo {display locals; display source}

A.2.15 IF

Use the If command to evaluate an expression and then, depending on the results, execute a
list of commands. The format of the If command is:

IF <expr> { <command> }
[ELSEIF <expr> { <command> } [ELSEIF <expr> { <command> } [...]]]
[ELSE { <command> }]

If the expression results in a non-zero value, the list of debugger commands contained after
the IF expression are executed. Otherwise, the list of commands that appear after the ELSEIF
expression are executed.

A.2.16 INvoke (or <)

Use the Invoke command to invoke a file containing a number of debugger commands. The
format of the Invoke command is:

INvoke <file> [<string> [<string> [...]]]
< <file> [<string> [<string> [...]]]

<file> is the name of the command file to invoke.

<string> will be passed as a parameter. These parameters may be referenced in the
command file as <1>, <2>, etc.

Command Summary 187

Appendices

A.2.17 Log (or >)

Use the Log command to send the Dialog window output to a specified file. The following
commands start logging to a file:

Log <file>
Log /Start <file>
> <file>

The following commands start appending log information to a file.

Log > <file>
>> <file>
Log /Append <file>

The following commands stop logging:

Log
>

A.2.18 MOdify

Use the Modify command to change memory at an address to the values specified by the list
of expressions.

MOdify [/Byte|/Pointer|/Word|/Dword|/IOByte|/IOWord|/IODword]
<address>[,<expr>[...]]

The options for the modify command are:

/Byte /Pointer /Word /Dword Control the size of memory to be modified.

/IOByte /IOWord /IODword Control the size of the I/O port to be modified.

<address> The address to modify.

<expr> The values to be placed in memory.

This command changes the 3 bytes at location "foo" to the values 1, 2 and 3:

modify /byte foo 1,2,3

This command changes the 4 bytes at location "foo" to the value 12345678 hex:

modify /dword foo 0x12345678

188 Command Summary

Debugger Commands

A.2.19 NEW

Use the New command to initialize various items. The format of the New command is:

NEW [<args>]
NEW /Program [[:<symfile>] <progfile> [<args>]]
NEW /Restart [<args>]
NEW /STDIn <file>
NEW /STDOut <file>
NEW /SYmbol <file> [seg [,seg [...]]

<symfile> represents a file containing the symbolic information.

<progfile> represents the executable file.

<args> represent the arguments to be passed to the program.

/Restart Reload the current application and place it into an initial state so that you may
begin execution again. The application may have already partially or completely
executed.

/STDIn associate the standard input file handle with a particular file or device.

/STDOut associate the standard output file handle with a particular file or device.

/Symbol load additional symbolic debugging information and specify the mapping
between the linker addresses and the actual execution addresses.

A.2.20 PAint

Use the Paint command to define window or dialog colours. To define the colour for
windows, use the following command:

PAint [Status|<wndname>] <wndattr> <color> ON <color>

To define the colour for dialogs in the character-based version of the debugger, use the
following command:

PAint DIalog <dlgattr> <color> ON <color>

The paint options are as follows:

Command Summary 189

Appendices

<wndattr> allows you to define the window attributes. You can choose from the following
items:

MEnu Plain menu text (character-based)

MEnu STandout menu accelerator key (character-based)

MEnu Disabled grayed menu item (character-based)

MEnu Active menu item under the cursor (character-based)

MEnu Active STandout menu accelerator key under the cursor
(character-based)

MEnu Frame frame of the menu (character-based)

MEnu Disabled Active grayed menu item under the cursor (character-based)

TItle Disabled a non active window’s title

Frame Active the frame of the active window (character-based)

Frame Disabled the frame an inactive window (character-based)

ICon an icon

Plain normal text within a window

Active window text under the cursor

SElected window text being selected

STandout window text the debugger wishes to highlight

Active STandout window text the debugger wishes to highlight under the cursor

BUtton the gadgets on the left side of a window (character-based)

<dlgattr> option allows you to define the dialog attributes. The possible options are:

190 Command Summary

Debugger Commands

Plain normal text

Frame the dialog frame

SHadow the shadow of a button

BUtton Plain normal button text

BUtton STandout button accelerator key character

BUtton Active a button which has focus

BUtton Active STandout button accelerator key character of a button with focus

<color> You can choose from the following colours:

• BLAck

• BLUe

• GREEn

• Cyan

• Red

• MAgenta

• BROwn

• White

• GREY

• GRAy

• BRIght BLUe

• BRIght GREEn

• BRIght Cyan

• BRIght Red

Command Summary 191

Appendices

• BRIght MAgenta

• Yellow

• BRIght BROwn

• BRIght White

Some examples of the paint command follow:

paint all plain black on white
paints plain text black on white in all windows.
paint dialog button standout bright green on yellow

A.2.21 Print (or ?)

Use the Print command to prompt for an expression and then print it to the log window. Use
this command to examine the values of variables and expressions. The Print command is:

Print [/Window|/Program] [<printlist>]

/Window open up a watch window containing the listed expressions.

/Program print the results to the application’s screen.

<printlist> is [<format>] [<expr> [,<expr> [...]]]

<format> is a printf like format string. It consists of plain text intermixed with control
sequences, which will be substituted with values from the expression list. The
control sequences are:

%i The corresponding argument is printed out as a signed decimal
integer value.

%d The corresponding argument is printed out as a signed decimal
integer value.

%u The corresponding argument is printed out as an unsigned decimal
integer value.

%x The corresponding argument is printed out as an unsigned
hexadecimal integer value. Letter digits are printed in lower case
(a-f).

192 Command Summary

Debugger Commands

%X The corresponding argument is printed out as an unsigned
hexadecimal integer value. Letter digits are printed in upper case
(A-F).

%o The corresponding argument is printed out as an unsigned octal
integer value.

%p The corresponding argument is printed out as a pointer
(segment:offset) value in hexadecimal notation.

%c The corresponding argument is printed out as a single character
value.

%s The corresponding argument is printed out as a C/C++ string
value. The argument must point to a string of characters
terminated by a byte whose value is zero.

%% To print out a percentage symbol, the "%" must be doubled up
(i.e., %%).

%f The corresponding argument is printed out in floating-point
representation. If the floating-point value has a very large or small
magnitude, you should use one of "g", "G", "e" or "E" formatting.

%g The corresponding argument is printed out in floating-point
representation. Numbers of very large or small magnitude are
printed out in scientific "E" notation (e.g., 1.54352e+16). The
exponent letter is printed in lower case.

%G The corresponding argument is printed out in floating-point
representation. Numbers of very large or small magnitude are
printed out in scientific "E" notation (e.g., 1.54352E+16). The
exponent letter is printed in upper case.

%e The corresponding argument is printed out in scientific "E"
notation (e.g., 1.23456e+02). The exponent letter is printed in
lower case.

%E The corresponding argument is printed out in scientific "E"
notation (e.g., 1.23456E+02). The exponent letter is printed in
upper case.

%r The corresponding argument is printed out in the current default
numeric radix.

Command Summary 193

Appendices

%a The corresponding argument is printed out as a symbol reference
(symbol_name+offset) when possible; otherwise it is printed out as
a pointer (segment:offset) value in hexadecimal notation.

%l The corresponding argument is printed out as a line number
reference (module_name@line_number+offset) when possible;
otherwise it is printed out as a pointer (segment:offset) value in
hexadecimal notation.

Some examples of the print command follow. This command prints the value of "i":

? i

This command prints "decimal=100 hex=0x64":

print {decimal=%d hex=%x} 100,100

A.2.22 Quit

Use the Quit command to leave the debugger.

A.2.23 RECord

Use the Record command to add a command to the replay window. This command is for
internal use only. The format of the command is:

REcord<expr> <command>

A.2.24 Register

The format of the Register command is:

Register <intexpr>

If intexpr is negative, this is equivalent to using the menu item Undo/Undo -<intexpr> times.
If intexpr is positive, this is equivalent to using the menu item Undo/Redo <intexpr> times.

194 Command Summary

Debugger Commands

A.2.25 REMark (or *)

Use the Remark command to enter lines of comments. The format of the command is:

REMark <string>

A.2.26 Set

These commands are used internally by the debugger to save and restore the configuration.
The syntax is:

Set AUtosave [ON|OFf]
Set ASsembly [Lower|Upper] [Outside|Inside] [Source|NOSource]
[Hexadecimal|Decimal]
Set Variable [Entire|Partial] [CODe|NOCODe] [INherit|NOINherit]
[COMpiler|NOCOMpiler] [PRIvate|NOPRIvate] [PROtected|NOPROTected]
[Members|NOMembers]
Set FUnctions [Typed|All]
Set GLobals [Typed|All]
Set REGister [Hexadecimal|Decimal] [Extended|Normal]
Set Fpu [Hexadecimal|Decimal]
Set Bell [ON|OFf]
Set Call [/Far|/Interrupt|/Near] [([<location> [,<location> [...]]])]
Set Dclick <expr>
Set Implicit [ON|OFf]
Set INput <wndname>
Set Radix <expr>
Set RECursion [ON|OFf]
Set SEarch [CASEIgnore|CASEREspect] [Rx|NORx] <string>
Set SOurce [/Add] [<path> [<path>] [...]]]
Set SYmbol [/Add|/Ignore|/Respect] [<lookspec> [<lookspec> [...]]]
Set Tab <intexpr>
Set Level [Assembly|Mixed|Source]
Set LAnguage [CPP|C|FORTRAN]
Set SUpportroutine <string>
Set MAcro <wndname> <key> <command>

<location> see call command.

<lookspec> [/Ignore|/Respect] <string>

A.2.27 SHow

The Show commands are used internally by the debugger to save and restore its configuration.
The syntax is:

Command Summary 195

Appendices

SHow Paint
SHow Display
SHow Font
SHow Set
SHow Set AUtosave
SHow Set ASsembly
SHow Set Variable
SHow Set FUnctions
SHow Set GLobals
SHow Set REGister
SHow Set Fpu
SHow Set Bell
SHow Set Call
SHow Set Dclick
SHow Set Implicit
SHow Set INput
SHow Set Radix
SHow Set RECursion
SHow Set SEarch
SHow Set SOurce
SHow Set SYmbol
SHow Set Tab
SHow Set Level
SHow Set LAnguage
SHow Set MAcro
SHow Set SUpportroutine
SHow Flip
SHow Hook

A.2.28 SKip

Use the Skip command to set CS:EIP to a specific address. The format of the command is:

SKip <address>

A.2.29 STackpos <intexpr>

The Stackpos command is the same as using Undo/Unwind. The <intexpr> allows you to
define the number of times to undo or unwind.

A.2.30 SYstem (or !)

Use the System command to spawn an operating shell to execute a given string. The format
of the system command is:

SYstem [/Remote|/Local] <string>

196 Command Summary

Debugger Commands

/Remote the shell is started on the program side of a remote debug link.

/Local the shell is started on the debugger side of a remote debug link.

A.2.31 THread (or ~)

Use the Thread command to manipulate the threads of execution of a multi-threaded
application under OS/2 or NetWare 386. The format of the Thread command is:

THread [/Show|/Freeze|/Thaw|/Change] [<threadid>]

/Show display the status of the current thread.

/Freeze freeze a thread and make it unrunnable.

/Thaw make a frozen thread runnable.

/Change to select a specific thread.

<threadid> is the identification number of the thread.

A.2.32 Trace

Use the Trace command to step through the execution of your program. The Trace command
is:

Trace [/Assembly|/Mixed|/Source] [/Into|/Next|/Over]

/Assembly trace through your assembly code on instruction at a time.

/Mixed trace execution of the application one source statement at a time, or one
instruction at a time when no source text is available.

/Source trace execution of the application one source statement at a time.

/Into continue execution to the next statement or assembly instruction. If the current
statement or instruction invokes a routine, then the next statement or instruction
is the first one called in the routing.

/Next continue execution to the next statement or assembly instruction that
immediately follows the current statement or instruction in memory. If the
current statement or instruction is one that branches, be sure that the execution

Command Summary 197

Appendices

path eventually executed the statement or instruction that follows. If the
program does not executed this point, the program may execute to completion.

/Over continue execution to the next statement or assembly instruction. If the current
statement or instruction invokes a routine, then the next statement or instruction
is the one that follows the invocation of the routine.

A.2.33 Undo

The format of the Undo command is:

Undo <intexpr>

If intexpr is positive, this is equivalent to using the menu item Undo/Undo <intexpr> times. If
intexpr is negative, this is equivalent to using the menu item Undo/Redo -<intexpr> times.

A.2.34 View

Use the View command to show a file in a window. The format of the command is:

View [/Binary] [<file>|<module>]

/Binary show the file contents in binary.

<file> the file to be shown.

<module> the module to be shown. The default is the current module.

A.2.35 While

Use the While command to permit the execution of a list of commands while the specified
expression is true. The While command is:

While <expr> { <command> }

A.2.36 WIndow

This command operates on the current window. It is useful when defining accelerators that
perform window operations.

198 Command Summary

Debugger Commands

WIndow CLose
close the window

WIndow CURSORStart
move the cursor to start of line

WIndow CURSOREnd
move the cursor to end of line

WIndow CURSORDown
move the cursor down one line

WIndow CURSORLeft
move the cursor left

WIndow CURSORRight
move the cursor right

WIndow CURSORUp
move up one line

WIndow Dump
dump the window to a file

WIndow Log
dump the window to a log window

WIndow FINDNext
find the next occurrence of the current search string

WIndow FINDPrev
find the previous occurrence of the current search string

WIndow Next
make another window the current window

WIndow PAGEDown
move the window down one page

WIndow PAGEUp
move the window up one page

WIndow POpup
show the window’s floating pop-up menu

Command Summary 199

Appendices

WIndow SEarch
search for a given string

WIndow SCROLLDown
scroll the window down one line

WIndow SCROLLUp
scroll the window up one line

WIndow SCROLLTop
scroll the window to the very top

WIndow SCROLLBottom
scroll the window to the very bottom

WIndow TABLeft
move to the previous tabstop

WIndow TABRight
move to the next tabstop

WIndow MAXimize
maximize the window

WIndow MINimize
minimize the window

WIndow REStore
restore the window

WIndow TIle
tile all windows

WIndow CAscade
cascade all windows

WIndow PRevious
move to the previous window

200 Command Summary

Predefined Symbols

B. Predefined Symbols

The Watcom Debugger defines a number of symbols which have special meaning. Each of
the registers is designated by a special name.

eax 32-bit EAX register (32-bit mode only)
ax 16-bit AX register
al 8-bit AL register
ah 8-bit AH register
ebx 32-bit EBX register (32-bit mode only)
bx 16-bit BX register
bl 8-bit BL register
bh 8-bit BH register
ecx 32-bit ECX register (32-bit mode only)
cx 16-bit CX register
cl 8-bit CL register
ch 8-bit CH register
edx 32-bit EDX register (32-bit mode only)
dx 16-bit DX register
dl 8-bit DL register
dh 8-bit DH register
eip Instruction pointer register (32-bit mode only)
ip Instruction pointer register
esi Source index register (32-bit mode only)
si Source index register
edi Destination index register (32-bit mode only)
di Destination index register
esp Stack pointer register (32-bit mode only)
sp Stack pointer register
ebp Base pointer register (32-bit mode only)
bp Base pointer register
cs Code segment register
ds Data segment register
es Extra segment register
fs Segment register (32-bit mode only)

Predefined Symbols 201

Appendices

gs Segment register (32-bit mode only)
ss Stack segment register
fl Flags register
efl Flags register (32-bit mode only)
fl.flg_bit_name Individual bits in Flags register

flg_bit_name ::= "c" | "p" | "a" | "z" | "s" | "i" | "d" | "o"

efl.flg_bit_name Individual bits in Flags register

flg_bit_name ::= "c" | "p" | "a" | "z" | "s" | "i" | "d" | "o"

The following table lists the full name for each of the flags register bits:

fl.o, efl.o overflow flag
fl.d, efl.d direction flag
fl.i, efl.i interrupt flag
fl.s, efl.s sign flag
fl.z, efl.z zero flag
fl.a, efl.a auxiliary carry flag
fl.p, efl.p parity flag
fl.c, efl.c carry flag

st0 - st7 Numeric Data Processor registers (math coprocessor registers)
cw 8087 control word (math coprocessor control word)
cw.cw_bit_name Individual bits in the control word

cw_bit_name ::= "ic" | "rc" | "pc" | "iem" | "pm" |

"um" | "om" | "zm" | "dm" | "im"

The following table lists the full name for each of the control word bits:

cw.ic infinity control

0 = projective
1 = affine

cw.rc rounding control (2 bits)

00 = round to nearest or even
01 = round down (towards negative infinity)
10 = round up (towards positive infinity)
11 = chop (truncate toward zero)

202 Predefined Symbols

Predefined Symbols

cw.pc precision control (2 bits)

00 = 24 bits
01 = reserved
10 = 53 bits
11 = 64 bits

cw.iem interrupt enable mask (8087 only)

0 = interrupts enabled
1 = interrupts disabled (masked)

cw.pm precision (inexact result) mask
cw.um underflow mask
cw.om overflow mask
cw.zm zero-divide mask
cw.dm denormalized operand mask
cw.im invalid operand mask

sw 8087 status word (math coprocessor status word)
sw.sw_bit_name Individual bits in the status word

sw_bit_name ::= "b" | "c3" | "st" | "c2" | "c1" |

"c0" | "es" | "sf" | "pe" | "ue" |
"oe" | "ze" | "de" | "ie"

The following table lists the full name for each of the status word bits:

sw.b busy
sw.c3 condition code bit 3
sw.st stack stop pointer (3 bits)

000 = register 0 is stack top
001 = register 1 is stack top
010 = register 2 is stack top

.

.

.
111 = register 7 is stack top

sw.c2 condition code bit 2
sw.c1 condition code bit 1

Predefined Symbols 203

Appendices

sw.c0 condition code bit 0
sw.es error summary (287, 387 only)
sw.sf stack fault (387 only)
sw.pe precision (inexact result) exception
sw.ue underflow exception
sw.oe overflow exception
sw.ze zero-divide exception
sw.de denormalized operand exception
sw.ie invalid operation exception

The debugger permits the manipulation of register contents using any of the operators
described in the following chapter. By default, these predefined names are accessed just like
any other variables defined by the user or the application. Should the situation ever arise
where the application defines a variable whose name conflicts with that of one of these
debugger variables, the module specifier dbg may be used to resolve the ambiguity. For
example, if the application defines a variable called cs then dbg@cs can be specified to
resolve the ambiguity. The "_dbg@" prefix indicates that we are referring to a debugger
defined symbol rather than an application defined symbol.

The flags register, the 8087 control word, and the 8087 status word can be accessed as a
whole or by its component status bits.

Example:
/fl.c=0
/cw.um=0
?sw.oe

In the above example, the "carry" flag is cleared, the 8087 underflow mask of the control
word is cleared, and the 8087 overflow exception bit of the status word is printed.

The low order bit of the expression result is used to set or clear the specified flag.

Example:
fl.c=0x03a6

In the above example, the "carry" flag is cleared since the low order bit of the result is 0.

The debugger also defines some other special names.

204 Predefined Symbols

Predefined Symbols

dbg$32 This debugger symbol represents the mode in which the processor is running.

0 16-bit mode
1 32-bit mode

dbg$bp This debugger symbol represents the register pair SS:BP (16-bit mode) or
SS:EBP (32-bit mode).

Example:
? dbg$bp

dbg$code This debugger symbol represents the current code location under examination.
The dot address "." is either set to dbg$code or dbg$data, depending on whether
you were last looking at code or data.

dbg$cpu This debugger symbol represents the type of central processing unit which is in
your personal computer system.

0 Intel 8088, 8086 or compatible processor
1 Intel 80188, 80186 or compatible processor
2 Intel 80286 or compatible processor
3 Intel 80386 or compatible processor
4 Intel 80486 or compatible processor
5 Intel Pentium processor

dbg$ctid This debugger symbol represents the identification number of the current
execution thread. Under DOS and QNX, the current thread ID is always 1. The
current execution thread can be selected using the Thread window or the Thread
command.

dbg$data This debugger symbol represents the current data location under examination.
The dot address "." is either set to dbg$code or dbg$data, depending on whether
you were last looking at code or data.

dbg$etid This debugger symbol represents the identification number of the thread that
was executing when the debugger was entered. Under DOS and QNX, the
executing thread ID is always 1.

dbg$fpu This debugger symbol represents the type of numeric data processor (math
coprocessor) that is installed in your personal computer system.

Predefined Symbols 205

Appendices

-1 An 80x87 emulator is installed
0 No coprocessor is installed
1 An Intel 8087 is installed
2 An Intel 80287 is installed
3 An Intel 80387 is installed
4 An Intel 80486 processor, supporting coprocessor instructions, is

installed
5 An Intel Pentium processor, supporting coprocessor instructions, is

installed

dbg$ip This debugger symbol represents the register pair CS:IP (16-bit mode) or
CS:EIP (32-bit mode).

Example:
? dbg$ip

dbg$monitor This debugger symbol represents the type of monitor adapter which is in use.

0 IBM Monochrome Adapter
1 IBM Colour Graphics Adapter (CGA)
2 IBM Enhanced Graphics Adapter (EGA)
3 IBM Video Graphics Array (VGA)

dbg$os This debugger symbol represents the operating system that is currently running
the application.

1 DOS
2 OS/2
3 386|DOS-Extender from Phar Lap Software, Inc.
5 NetWare 386 from Novell, Inc.
6 QNX from QNX Software Systems Ltd.
7 DOS/4GW from Tenberry Software, Inc. (included in the Watcom

C/C++32 and Watcom FORTRAN 7732 packages)
8 Windows 3.x from Microsoft Corporation
10 Windows NT or Windows 95 from Microsoft Corporation
11 AutoCAD from Autodesk, Inc.

dbg$pid (OS/2, NetWare 386, QNX, Windows NT, Windows 95 only) This debugger
symbol contains the process identification value for the program being
debugged.

dbg$psp (DOS only) This debugger symbol contains the segment value for the DOS
"program segment prefix" of the program being debugged.

206 Predefined Symbols

Predefined Symbols

dbg$radix This debugger symbol represents the current default numeric radix.

dbg$remote This debugger symbol is 1 if the "REMotefiles" option was specified and 0
otherwise.

dbg$sp This debugger symbol represents the register pair SS:SP (16-bit mode) or
SS:ESP (32-bit mode).

Example:
? dbg$sp

dbg$loaded This debugger symbol is 1 if a program is loaded. Otherwise, it is 0.

dbg$nil This debugger symbol is the null pointer value.

dbg$src This debugger symbol is 1 if you are currently debugging in an area that
contains debugging information.

Predefined Symbols 207

Appendices

208 Predefined Symbols

Wiring For Remote Debugging

C. Wiring For Remote Debugging

This appendix describes both serial and parallel port cable wiring for remote debugging.

C.1 Serial Port Wiring Considerations
If you plan to use the serial port Debug Server "SERSERV", a cable must connect the serial
ports of the two computer systems. The following diagram illustrates the wiring between the
two serial ports. If your computer systems have more than one serial port, any serial port may
be used.

Task Machine Debugger Machine

Serial Serial
Connector Connector

Pin # Pin #
1 (PG) <---------->1 (PG)

2 (TxD)<---------->3 (RxD)

3 (RxD)<---------->2 (TxD)

------- 4 (RTS) 4 (RTS) -------
| |
------> 5 (CTS) 5 (CTS) <------

------> 6 (DSR) 6 (DSR) <------
| |
| 7 (SG) <---------->7 (SG) |
| |
|------> 8 (DCD) 8 (DCD) <------|
| |
------ 20 (DTR) 20 (DTR) -------

Figure 25. Serial Port Wiring Scheme

Note that the wiring is symmetrical (i.e., either end of the cable can be plugged into either
PC). This particular arrangement of the wiring is sometimes called a "null modem" (since
pins 2 and 3 are crossed and no modem is involved).

Serial Port Wiring Considerations 209

Appendices

C.2 Parallel Port Wiring Considerations
If you plan to use the parallel port Debug Server "PARSERV" or "PARSERVW", a cable
must connect the parallel ports of the two computer systems. Three cabling methods are
supported - the LapLink cable, the Flying Dutchman cable, and WATCOM’s own design.
There are two advantages to using the LapLink or Flying Dutchman cable:

1. They are commercially available (you may already own one).

2. They may work with more PC "compatibles" than WATCOM’s cable.
WATCOM’s cabling requires 8 bi-directional data lines in the parallel port and
some PC "compatibles" do not support this.

The disadvantage with the LapLink and Flying Dutchman cables is that they are slower than
WATCOM’s cable since only 4 bits are transmitted in parallel versus 8 bits for WATCOM’s.
Thus WATCOM’s cable is faster but it will have to be custom made.

The LapLink cable is available from:

Travelling Software, Inc.
18702 North Creek Parkway
Bothell, Washington,
U.S.A. 98011
Telephone: (206) 483-8088

The Flying Dutchman cable is available from:

Cyco,
Adm. Banckertweg 2a,
2315 SR Leiden,
The Netherlands.

The following diagram illustrates WATCOM’s cable wiring between the two parallel ports.

210 Parallel Port Wiring Considerations

Wiring For Remote Debugging

Task Machine Debugger Machine

Parallel Connector Parallel Connector

Pin Number Pin Number
1 <--------------> 2
2 <--------------> 1
3 <--------------> 14
4 <--------------> 16
5 <--------------> 15
6 <--------------> 13
7 <--------------> 12
8 <--------------> 10
9 <--------------> 11

10 <--------------> 8
11 <--------------> 9
12 <--------------> 7
13 <--------------> 6
14 <--------------> 3
15 <--------------> 5
16 <--------------> 4
17 <--------------> 17
18 <--------------> 18

Figure 26. WATCOM Cable Wiring Scheme

The following diagram illustrates the LapLink cable wiring between the two parallel ports.

Task Machine Debugger Machine
Parallel Connector Parallel Connector

Pin Number Pin Number
2 --------------> 15
3 --------------> 13
4 --------------> 12
5 --------------> 10
6 --------------> 11

10 <-------------- 5
11 <-------------- 6
12 <-------------- 4
13 <-------------- 3
15 <-------------- 2
25 <--------------> 25

Figure 27. LapLink Cable Wiring Scheme

The following diagram illustrates the Flying Dutchman cable wiring between the two parallel
ports.

Parallel Port Wiring Considerations 211

Appendices

Task Machine Debugger Machine

Parallel Connector Parallel Connector

Pin Number Pin Number
1 --------------> 11
2 --------------> 15
3 --------------> 13
4 --------------> 12
5 --------------> 10

10 <-------------- 5
11 <-------------- 1
12 <-------------- 4
13 <-------------- 3
15 <-------------- 2

Figure 28. Flying Dutchman Cable Wiring Scheme

For the IBM PC and PS/2, the connectors are standard "male" DB-25 connectors. Note that,
in all cases, the wiring is symmetrical (i.e., either end of the cable can be plugged into either
PC).

Note: Although the wiring is different for all three cables, WATCOM’s parallel
communications software can determine which one is in use.

212 Parallel Port Wiring Considerations

Index

. A

.wdrc 135 About menu item 43
Accelerate command 177
Accelerator

for menu items 30
for pop-up menu 293
window 45

Accelerator menu item 42
Accelerator Pop-up menu

32-bit application debugging 129 Delete 46
32-bit debugging Modify 46

trap file 16 New 46
386|DOS-Extender 130, 206 TD Keys 46

version 130 WD Keys 46
387 accelerators 32, 45

examining 101 Action menu 29, 42, 134
modifying 101 Address menu item 79

All Modules menu item 49
Application menu item 42
arguments8 changing 35
array

expand 72
traversing in memory 818087
view slices 72examining 101

assemblymodifying 101
debugging 97registers 202-203
examining 99
inspecting operands 99
setting break points 99
window 98@

Assembly menu item 5, 40, 54, 56, 66, 79, 90
Assembly options 39
Assembly Pop-up menu

Break 99@@routine_name 142
Enter Function 99@L 119
Hex 99@R 119
Home 99@routine_name 142
Inspect 99

213

Index

Show/Address 99 Break Pop-up menu
Show/Functions 99 Assembly 90
Show/Module 99 Delete 90
Show/Source 99 Disable 90

At Cursor menu item 87 Enable 90
AutoCAD debugging Modify 89

ACAD.ADS 131 New 89
ADI 131 Source 90
ADS 131 breakpoint
ADS trap file 131 at cursor position 87
ADS.DBG 132 changing 89
ADS.TRP 131 clearing 87
ADSHELP.EXP 131 clearing all 88

AutoCAD Development System 131, 206 condition 85, 91
Autodesk, Inc 206 countdown 85, 92

counting 92
creating new 89
defined 85
deleting 90, 93B
disabling 87, 90
disabling all 88
displaying 88

backward execution enabling 87, 90
over call 65 enabling all 88
over simple statement 63 executing debugger commands 92

Bell 36 finding assembly code 90
Break finding source code 90

window 89 in assembly code 99
Break All menu item 54 on debug message 88
Break command 178 on execute 85, 91
Break menu on image load 87

At Cursor 87 on write 52, 73, 78, 85, 91
Clear All 88 restoring 88
Disable All 88 saving 88
Enable All 88 setting 87
New 87 setting in caller 67
On Debug Message 88 setting simple 86
On Image Load 87 specifying address 91
Restore 88 state 86
Save 88 status 92
Toggle 87 toggling 87
View All 88 up call stack 67

Break menu item 6, 52-53, 56, 67, 73, 86, 99 window 89
Break on Write menu item 78 breakpoints 4

214

Index

buttons 5, 28 Replay 40
Byte menu item 102 Source 40

Threads 40
CodeView keyboard emulation 32
Color option 19
Colour option 19C
COlumns option 17, 22
command

Accelerate 177
cable Break 178

Flying Dutchman 210 Call 179
LapLink 210 CAPture 181
WATCOM COnfigfile 181
WATCOM’s own 210 Display 181

Call command 179 DO (or /) 183
calls ERror 183

displaying stack 66 Examine 183
unwinding stack 4, 31, 33, 64, 67 Flip 185
window 66 FOnt 185

Calls menu item 40 Go 185
Calls Pop-up menu Help 186

Break 67 HOok 186
Goto 67 IF 187
Unwind 67 INvoke (or <) 187

CAPture command 181 Log (or >) 188
case insensitive searching 37 MOdify 188
changing memory 41 NEW 189
char 157 PAint 189
CHecksize option 21 Print (or ?) 192
Class/Show Functions menu item 75 Quit 194
Class/Show Generated menu item 75 RECord 194
Class/Show Inherited menu item 75 Register 194
Class/Show Private menu item 75 REMark (or *) 195
Class/Show Protected menu item 75 Set 195
Class/Show Static menu item 75 SHow 195
Clear All menu item 54, 88 SKip 196
code STackpos <intexpr> 196

skipping 62 summary 177
Code menu 40 syntax 175

Assembly 40 SYstem (or !) 196
Calls 40 THread (or ~) 197
Functions 40 Trace 197
Images 40 Undo 198
Modules 40 View 198

215

Index

While 198 debug linker options 10
WIndow 198 debug registers

Command menu item 35 disabling 135
common menu items 5 using 135
COnfigfile command 181 Debug Startup menu item 62
configuration debugging

automatic saving of 36 32-bit DOS applications 129
saving 36 at assembly level 97

Console option 22 DLLs 57
Contents menu item 43 mouse events 17
context sensitivity 4 Novell NLM 132
control-key shortcuts 29 postmortem dump under QNX 136
Coprocessor preparing application for 9

examining 101 remote 105
modifying 101 windows applications 133

CPU Register debugging an OS/2 exception handler 16
window 97 debugging DLLs 134

Cursor Follow menu item 78 debugging information 58
CWD, environment variable 135 debugging under QNX 135
Cyco 210 Delete menu item 5, 46, 74, 90, 101

Delete Symbols menu item 58
dialogs

general description 31
DIp option 19D
Disable All menu item 88
Disable menu item 90
display

Data menu 41 changing columns 17
File Variables 41 changing lines 16, 19
FPU Registers 41 Display command 181
Globals 41 DLL
I/O Ports 41 debugging 57, 134
Locals 41 showing list of 57
Log 41 DO (or /) command 183
Memory at 41 DOS extenders
MMX Registers 41 386|DOS-Extender 130, 206
Registers 41 debugging 129
Stack 41 DOS/4GW 130, 206
Watches 41 trap option 16

_dbg 204 DOS/4GW 130, 206
_dbg@ 204 version 130
DBGLIB.REX 130 DOS4G.EXE 130
debug compiler options 9 DOS4GW.EXE 130
debug kernel 105 double 157

216

Index

DOwnload option 18 _dbg module 151
dumper 136 _dbg@cs 151
dumper command 136 evaluating 52
DWord menu item 102 flags 150
DYnamic option 17 flags register 150

floating point registers 150
FORTRAN operators 164
function 142
handling of 141E
image@module@routine_name 142
instruction pointer 150
integer constant 146

Edit menu item 72, 74 line numbers 145
EGA lines 19 memory references 149
Ega43 option 19 module 142
Enable All menu item 88 module@routine_name 142
Enable menu item 90 offset 149
Enter Function menu item 52, 99 pre-defined variables 150
environment variables procedure 142

CWD 135 real constant 147
HOME 138 referencing memory 149
PATH 17-18, 107, 112, 114-115, 130 register aggregate 151
WD 23 registers 150
WD_PATH 135, 138 routine 142

ERror command 183 rules 141
ESP 41 segment 149
Examine 141 segment registers 150
Examine command 183 status word register 150
exception handler symbol name 142

OS/2 16 type enforcement 151, 157
Execute to menu item 61 watching 52
Exit menu item 35 Extended menu item 98
expression extensions

evaluate 72 .TRP 16
expressions

aggregate 151
C operators 152
C++ operators 160 F
character constant 148-149
coercing types 151, 157
complex constant 148
control word register 150 Far Follow menu item 78
current module 142 Fastswap option 22
current routine 142 features 3

217

Index

FieldOnTop menu item 74
file Gviewing 53

window 53
File menu 35

Command 35 global variables
Exit 35 displaying 55
Load Setup 35 showing list 55
Open 35 Globals
Options 35 window 55
Save Setup 35 Globals menu item 6, 41, 58
Source Path 35 Globals options 40
System 35 Globals Pop-up menu
View 35 Raw Memory 55
Window Options 35 Typed Symbols 55

File options 39 Watch 55
File Variables Go command 185

window 72 Go menu item 61
File Variables menu item 41 Goto menu item 66-67
Find menu item 49, 52 graphics applications
Flip command 185 debugging 133
float 157
Flying Dutchman cable 210
FOnt command 185
FPU H

window 101
FPU Pop-up menu

Hex 101
Modify 101 Help command 186

FPU Registers menu item 41 Help menu 43
Freeze menu item 68 About 43
Functions Contents 43

inspecting 52 On Help 43
showing list of 52, 56 Search 43
window 56 Hex menu item 98-99, 101-102

Functions menu item 5, 40, 54, 58 HOME environment variable 138
Functions options 40 Home menu item 52, 64, 79, 99
Functions Pop-up menu HOok command 186

Assembly 56
Break 56
Source 56
Typed Symbols 57

218

Index

I K

I/O keep 185
window 100 keyboard equivalents 32, 45

I/O Pop-up menu for menu items 30
Delete 101 for pop-up menu 29
Modify 101
New 101
Read 101
Type 101 L
Write 101

I/O ports
reading 100

LapLink cable 210writing 100
Left menu item 79I/O Ports menu item 41
LInes option 16IF command 187
linked listsImages

following in memory 80showing list of 57
Load Setup menu item 35window 57
local file specifier prefixImages menu item 40

@L 119Images Pop-up menu
Local variables 41Delete Symbols 58
LOcalinfo option 17Functions 58
LocalsGlobals 58

window 72Modules 58
Locals menu item 41New Symbols 58
locating source code 11infinite loop
Loginterrupting 123

window 44Inspect menu item 5, 52, 72-73, 98-99, 102
Log (or >) command 188instruction pointer
Log menu item 41repositioning 62
long 157-158int 157-158
loopsInternet 119

running to completion 61Internet Protocol
remote debugging 117

interrupting a running program 123
INvoke (or <) command 187
invoke files 36
Invoke option 17
IP address 118

219

Index

Type/Long 79
Type/Qword 79M Type/Short 79
Type/Unsigned __int64 80
Type/Unsigned Char 80
Type/Unsigned Long 80Match menu item 49
Type/Unsigned Short 80memory
Type/Word 79break on write 78

menuchanging 41
accelerator 29display 77
accelerators 30displaying 41
Action 29examine array 78
alt-key shortcuts 30examine new address 79
Assembly 5follow pointers 78
Break 6modify 77-78
control-key shortcuts 29set display type 79
Delete 5window 77
Functions 5Memory at... menu item 41
Globals 6Memory Pop-up menu
Inspect 5Address 79
keyboard equivalents 30Assembly 79
Modify 5Break on Write 78
New 5Cursor Follow 78
shortcuts 29-30Far Follow 78
Show 6Home 79
Source 5Left 79
Type 6Modify 78
Watch 5Near Follow 78

menus 30Previous 78
Microsoft Corp 206Repeat 78
MMXRight 79

examining 102Segment Follow 78
modifying 102Type/0:16 Pointer 80
window 102Type/0:32 Pointer 80

MMX Pop-up menuType/16:16 Pointer 80
Byte 102Type/16:32 Pointer 80
DWord 102Type/__int64 79
Hex 102Type/Byte 79
Inspect 102Type/Char 79
Modify 102Type/Double 80
Signed 102Type/Dword 79
Word 102Type/Extended Float 80

MMX Registers menu item 41Type/Float 80
Modify 141

220

Index

MOdify command 188 showing list of 57
Modify menu item 5, 46, 78, 89, 98, 101-102 NOCHarremap option 21
Modify... menu item 73 NOExports option 17
modules noflip 186

showing list of 53 NOFpu option 19
window 53 NOGraphicsmouse option 21

Modules menu item 40, 58 NOInvoke option 17
Modules options 40 NOMouse option 17
Modules Pop-up menu NOSymbols option 19

Assembly 54 Novell 206
Break All 54 Novell NLM
Clear All 54 debugging 132
Functions 54 Novell SPX remote debugging 110
Show All 54 null modem wiring 209
Source 54

Monochrome option 19
mouse

sharing 17 O
mouse events

debugging 17
Multi-media extension registers

On Debug Message menu item 88examining 102
On Help menu item 43modifying 102
On Image Load... menu item 87
on top 74
Once argument 110
Open menu item 35N
option

Bell 36
options

name completion 61, 91 Assembly window 39
Named Pipes CHecksize 21

remote debugging 115 Color 19
Near Follow menu item 78 Colour 19
NetWare 386 206 COlumns 17, 22
NEW command 189 Console 22
new features 3 default 23
New menu item 5, 46, 72, 74, 87, 89, 100-101, dialog 36

141 DIp 19
New Symbols menu item 58 DOwnload 18
Next menu item 42, 49 DYnamic 17
Next Sequential menu item 61 Ega43 19
NLM Fastswap 22

debugging Novell 132 File window 39

221

Index

Functions window 40 parallel port remote debugging 111
Globals window 40 parameters
Invoke 17 changing 35
LInes 16 PATH environment variable 17-18, 112, 114-115,
LOcalinfo 17 130
Modules window 40 PATH, environment variable 107
Monochrome 19 PEDHELP.EXP 130
NOCHarremap 21 Phar Lap Software, Inc 130, 206
NOExports 17 RUN386.EXE 130
NOFpu 19 TNT.EXE 130
NOGraphicsmouse 21 platforms supported 3
NOInvoke 17 PLS.TRP 130
NOMouse 17 PLSHELP.EXP 130
NOSymbols 19 pmd.trp 136
Overwrite 19 pointer
Page 20 display as array 76
REMotefiles 18 display as string 76
setting 35 display value 76
Swap 20 follow 73
TRap 16 follow in memory 78
Two 20 show as array 73
Variables window 39 show code at 74
Vga50 19 show memory at 74
Watches window 39 postmortem dump
XConfig 22 QNX 136

Options menu item 35 predefined symbol
Options/Whole Expression menu item 76 dbg$32 205
OS/2 dbg$bp 205

remote debugging 116 dbg$code 205
OS/2 exception handler 16 dbg$cpu 205
OutputDebugString 88 dbg$ctid 205
overview 3 dbg$data 205
Overwrite option 19 dbg$etid 205

dbg$fpu 205
dbg$ip 206
dbg$loaded 207
dbg$monitor 206P
dbg$nil 207
dbg$os 206
dbg$pid 206

Page option 20 dbg$psp 206
PAint command 189 dbg$radix 206
parallel port dbg$remote 207

wiring 210 dbg$sp 207

222

Index

dbg$src 207 registers 41
Previous menu item 49, 78 control word 202
Print (or ?) command 192 cw 202
program displaying 32-bit 98

arguments 35 displaying in decimal 98
interrupting 123 displaying memory 98
preparing for debugging 9 examining 97
restarting 35, 62 flags 202
running to specified address 61 floating point 202

modifying 97
st0 - st7 202
status word 203
sw 203Q

Registers menu item 41
REMark (or *) command 195
remote debugging 105

QNX 206 Novell SPX 110
customization 135 Once argument 110
debugging 135 over parallel port 111

QNX Software Systems Ltd 206 over serial port 112
Quit command 194 parallel port wiring 210

serial port wiring 209
with Internet Protocol 117
with Named Pipes 115R with OS/2 116
with TCP/IP 117
with Windows 114
with Windows NT 116Radix

remote file specifier prefixdefault 37
@R 119setting 37

remote trap files 105Raw Memory menu item 55
REMotefiles option 18Read menu item 101
Repeat menu item 78RECord command 194
Replay 4recording debug session 65

window 65Recursive functions
Replay menu item 40tracing over 37
Replay Pop-up menuRedo menu item 64

Assembly 66Register command 194
Goto 66Register Pop-up menu
Source 66Extended 98

replaying debug session 65Hex 98
Restart 35Inspect 98
Restart menu item 62Modify 98
restarting program 62

223

Index

Restore menu item 63, 88 search
restoring debug session 65 entering strings 50
resuming execution 61 ignoring case 37
return to caller 62 Search menu
reverse execution 4 All Modules 49

over call 65 Find 49
over simple statement 63 Match 49

Rewind Stack menu item 64 Next 49
Right menu item 79 Previous 49
RSI.TRP 130 Search menu item 43
run 61 search order

to cursor position 61 QNX 138
until function entered 52 searching 49
until loop completes 61 ignoring case 50
until return 62 incrementally 49

Run menu 61 Segment Follow menu item 78
Debug Startup 62 selecting text 29
Execute to 61 serial port remote debugging 112
Go 61 serial port wiring 209
Next Sequential 61 service name
Restart 62 tcplink 117
Restore 63 Set command 195
Run to Cursor 61 Set LAnguage 141
Save 63 settings 11, 35
Skip to Cursor 62 automatic saving of 36
Step Over 61 saving 36
Trace Into 61 short 157-158
Until Return 62 shortcuts 32, 45

Run to Cursor menu item 52, 61 for menu items 30
RUN386.EXE 130 for pop-up menu 29

Show All menu item 54
SHow command 195
Show menu item 6
SHow Set LAnguage 141, 148-149S
Show/Address menu item 52, 99
Show/Assembly menu item 52
Show/Functions menu item 52, 99

Save menu item 63, 88 Show/Line menu item 52
Save Setup menu item 35 Show/Module menu item 52
saving debug session 63 Show/Module... menu item 99
screen Show/Pointer Code menu item 74

number of columns 17 Show/Pointer Memory menu item 73
number of lines 16, 19 Show/Raw Memory menu item 73

scroll bars 28 Show/Source menu item 99

224

Index

Show/Type menu item 74 over calls 61
signed 157 string
Signed menu item 102 display pointer 76
SKip command 196 display pointer as 76
Skip to Cursor menu item 62 strings
skipping code 62 entering search 50
socket port number 117 finding 49

default 117 matching incrementally 49
Source support files

locating files 35 dbg 138
window 51 hlp 138

source code prs 138
displaying line number 52 search order 138
examining a module 52 sym 138
examining at address 52 trp 138
going to line number 52 Swap option 20
locating 11 Switch to menu item 68

Source menu item 5, 40, 54, 56, 66, 90 symbol completion 61, 91
Source Path menu item 35 symbols 61, 91
Source Pop-up menu predefined 201

Break 52 syntax
Enter Function 52 for commands 175
Find 52 SYSTEM 21
Home 52 SYstem (or !) command 196
Inspect 52 System menu item 35
Run to Cursor 52
Show/Address 52
Show/Assembly 52
Show/Functions 52 T
Show/Line 52
Show/Module 52
Watch 52

TCP/IPSP 41
remote debugging 117stack

TCP/IP services 117display 77
TCP/IP socket 117window 77
tcplink service name 117Stack menu item 41
TCPSERV 117stack unwinding 4
TD Keys menu item 46STackpos <intexpr> command 196
Tenberry Software, Inc 130, 206Status

DOS4G.EXE 130window 43
DOS4GW.EXE 130Step Over menu item 61

textstepping
selecting 29into calls 61

225

Index

Thaw menu item 68 type
Options/Expand show item

menu 76 show item’s type 74
item’ 76 Type menu item 6, 101

Thread Type/0:16 Pointer menu item 80
window 67 Type/0:32 Pointer menu item 80

THread (or ~) command 197 Type/16:16 Pointer menu item 80
Thread Pop-up menu Type/16:32 Pointer menu item 80

Freeze 68 Type/__int64 menu item 79
Switch to 68 Type/Array... menu item 73, 76
Thaw 68 Type/Byte menu item 79

threads Type/Char menu item 79
displaying 67 Type/Character menu item 75
freezing 68 Type/Decimal menu item 75
state 67 Type/Double menu item 80
switching to 68 Type/Dword menu item 79
thawing 68 Type/Extended Float menu item 80

Threads menu item 40 Type/Float menu item 80
TNT.EXE 130 Type/Hex menu item 75
To File menu item 42 Type/Long menu item 79
To Log menu item 42 Type/Pointer menu item 76
Toggle menu item 87 Type/Qword menu item 79
Toolbar Type/Short menu item 79

window 31 Type/String menu item 76
Trace command 197 Type/Unsigned __int64 menu item 80
Trace Into menu item 61 Type/Unsigned Char menu item 80
Trace Over Type/Unsigned Long menu item 80

recursive functions 37 Type/Unsigned Short menu item 80
tracepoint Type/Word menu item 79

defined 85 typecast 72, 74
tracing Typed Symbols menu item 55, 57

into calls 61
over calls 61

trap file 16, 136
ADS.TRP 131 U
PLS.TRP 130
pmd.trp 136
remote 105

Undo command 198RSI.TRP 130
Undo menu 63TRap option 16, 137

Home 64Travelling Software 210
Redo 64TRP extension 16
Rewind Stack 64Turbo keyboard emulation 32
Undo 64Two option 20

226

Index

Unwind Stack 64 Show/Pointer Memory 73
Undo menu item 64 Show/Raw Memory 73
undoing changes 63 Show/Type 74
unsigned 157 Options/Expand
until 185 Type/Array 76
Until Return menu item 62 Type/Character 75
Unwind menu item 67 Type/Decimal 75
Unwind Stack menu item 64 Type/Hex 75
unwinding call stack 64 Type/Pointer 76
user interface 3 Type/String 76

Watch 73
Variables

break on write 52
displaying 55V
global 41
inspecting 52
local 41, 72

variable static 41
break on write 73 stopping on write 85
display type 74 watching 41
file scope 72 Variables options 39
inspect 73 VGA lines 19
modify 73 Vga50 option 19
show raw storage 73 View All menu item 88
typecast 72, 74 View command 198
watch 73 View menu item 35
window 72

Variable Pop-up menu
Break 73
Class/Show Functions 75 W
Class/Show Generated 75
Class/Show Inherited 75
Class/Show Private 75
Class/Show Protected 75 Watch menu item 5, 52, 55, 72-73
Class/Show Static 75 Watches
Delete 74 window 72
Edit 74 Watches menu item 41
FieldOnTop 74 watchpoint 85
Inspect 73 defined 85
Modify 73 Watcom Debugger
New 74 overview 3
Options/Expand ’this’ 76 WD environment variable 23
Options/Whole Expression 76 WD Keys menu item 46
Show/Pointer Code 74 WD_PATH environment variable 138

227

Index

WD_PATH, environment variable 135 To Log 42
While command 198 Zoom 42
window Window Options menu item 35

Accelerator 45 Windows
Assembly 98 enhanced mode 114
Break 89 Microsoft 133
Calls 66 remote debugging 114
closing 27 Windows 3.x 206
CPU Register 97 Microsoft 133
current 28 Windows 95 206
File 53 Windows NT 206
File Variables 72 remote debugging 116
FPU 101 wiring
Functions 56 null modem 209
Globals 55 parallel port 210
I/O 100 serial port 209
Images 57 Word menu item 102
Locals 72 Write menu item 101
Log 44
maximizing 27
Memory 77
minimizing 27 X
MMX 102
Modules 53
moving 28

XConfig option 22options 38
Replay 65
resizing 29
restoring 27 ZSource 51
Stack 77
Status 43
System Menu 27 Zoom menu item 42
Thread 67
Toolbar 31
Variable 72
Watches 72
zooming 29

WIndow command 198
Window menu 42

Accelerator 42
Application 42
Next 42
To File 42

228

