Watcom Debugger

User’s Guide

Edition 11.0c

Notice of Copyright

Copyright 00 2000 Sybase, Inc. and itssubsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of Sybase, Inc. and its subsidiaries.

Printed in U.S.A.

Table of Contents

[g11 070 18 Tox 1 o] o IR

L OVEIVIEW .ottt et s et sae e et e eae e et e e satesabeesbseeseesbesenbeesbessnbessseesabessneesnneenns
000 I g 11 o [0 Tox 1 o o O
L2 NEW FEALUIES ..ottt e et e et e e et eeeaae e eeneeeeenneeas

2 O L= il 1 < = o T
1.2.2 REVEISE EXECULION ...coveveeiiicieectecte ettt ettt s sre e sre e
L23REPIAY .oeiiieeseee e
1.2.4 Stack UNWINAINGooveieiceeececesese e
1.2.5 Simplified Breakpointsccoccoirerereneneeeeeeeeseseseese e e
1.2.6 Context SENSItIVE MENUScooveeiveeiee ettt
L1277 BULONS ..ttt ettt e e e e e ne e e s be e e e sareeenns
1.3 CommMON MENU ITEMSoeiieeee et e

Preparing a Program t0 be DEDUGQEAocvvvveieieeeeeeeeeese et ene s

2 Preparing a Program to be Debugged ...
2.1 Compiler Debugging OPLiONScceveveereeeeieeeeees s s nes
2.2 Linker Debugging OPLiONScccooeeererininienie e
2.3 DEDUGGES SELLINGS ...veveeeeeieieieeeeiere sttt e e be b sae s

SLArting the DEDUGGEYc.eivieriiieiie ettt

3 Starting Up the DEDUGOESovevireeieieeierieierieesie ettt
3.1 Watcom Debugger Command LiNecccovveveverereneneneseeseeeeseesesessesneens

3.2 COMMON SWILCHESeiiiiiiicse e

3.3 DOS and Windows OPtioNScccceeeriereeieiresese e e e e see e see e eeseenas

3.4 DOS SPECITIC OPLIONS ...cvirverieieeeiesie et s

3.5 Windows SPecifiC OPLIONScccceeriririninese e

3.6 QNX OPLIONSeviierieeteriesie et ae bbb bt se e b e e e e e e e e ens

3.7 Environment Variables ... s

3.7.12 WD Environment Variableccovvieieienenieneneeeeeeeeeeeeeeens

3.7.2 WD Environment Variable in QNXcccoeoeivvienrnere e

Watcom Debugger ENVIFONMENTc.coeiieieieeee sttt sne e nes
4 The Watcom Debugger ENVIFONMENTccooveiiiieieceeseseese e s saeeee s

4.1 DebUger WINCOWScoeiieeeeeereeicnene et
4.1.1 WINAOW CONIOIScoieviiiceeee ettt st sane s s

=

GO hrDDBEADARMWOWWWW

10
11

13

15
15
16
19
20
21
22
23
23
23

25

27

27
27

Table

of Contents

4.1.2 The CUrrent WiNAOWcooeereereeeneenee e
4.1.3 Controlling the Size and Location of Windowscccceveevennns
4.1.3.1 Moving WINAOWScooveruiriiinieirietseesieese e
4.1.3.2 ReSIZING WINAOWScuerieeiriiirieinieesienesieseeie st
4.1.3.3 Z00ming WIiNGOWScccceviererinenirenesienesie e
4.1.3.4 Context Sensitive Pop-up Menuscocevveereererenennenes
4.1.3.5 TeXt SEECHON ..o s

4.2 Menusceeeeuvennne
43TheToolbar
4.4Didogs ..coeeveeeeeenen,
4.5 Accderators

4.5.1 Default ACCEIEIAOrSooieeeeiieee ettt e s
4.5.2 Turbo Emulation ACCEIEratorsoccoeveveeeiceee e

4.6 TheFileMenu

4.6.1 The OptioNS DIi@logccoveereeerieirieirieirieese e
4.6.2 The Window OptionS DialOgccccoeveererienerenneneee e
4.6.2.1 The Assembly Optionsccccvvvvieverenerereeeeese e
4.6.2.2 The Variables Optionsc.ccecevevevererieneeeeese s
4.6.2.3The FleOptionscccccevveeeereeese e
4.6.2.4 The Functions and Globals Optionsc.ccoceenierereennes
4.6.2.5 The Modules Optionsccoerererereieeineeenesese e

4.7 The Code Menu
4.8 The DataMenu
4.9 The Window Menu ..
4.10 The Action Menu ...
4.11 The Help Menu

4.12 The Status Window

4.13 The Log Window ...

4.14 The ACCEl€rator WINOAOWcccoieiiiieeiii ettt st s

Navigating Through a Program

5 Navigating Through @ Prograimcceveereerenninseseeeseesee e ssseseesees

5.1 The Search Menu

5.1.1 Entering SEarch StHNGS ..o

5.2 The Source Window

5.3 The File Window

5.4 The MOoAUIES WINUOWooeieeiiiiiiiee ettt st s

5.5 The Globas Window

5.6 The FUNCLHIONS WINCOWoeeiieeie ettt st

5.7 The Images Window

28
28
28
29
29
29
29
30
30
31
32
33

35
36
38
39
39
39
40
40
40
41
42
42
43
43

45

47

49
49
50
51
53
53
55
56
57

Table of Contents

Controlling Program EXECULIONcceieririirierie e sre st see e se e e eee e eneas 59
6 Controlling Program EXECULIONc.ccereiriereriineniinesieseeiessesesee s 61

6.1 TNERUNMENU ..ottt e 61

6.2 TNEUNUO MENU ...oviiiiiitiiete et 63

6.3 The REPlaY WINAOWooiiiiieiiiece et 65

6.4 The CaAlSWINAOWocoviveiiieriecieree s 66

6.5 The Thread WINAOWccovveieinreireee s 67

Examining and Modifying the Program SEatecccceririiinine e 69
7 Examining and Modifying the Program Statecccoecreinenninseneeeeeeseeee 71

7.1 Variable and Watch WindOWScoveineneinereeeeees e 71

7.2 The Memory and Stack WIiNdOWS ..o 77

7.2.1 FOllowing LINKE LiStS ..c.coveiriieriieriiecieesiees e 80

7. 2.2 TraVerSING AITAYS .ouveeeeeeeeeseseseseseste s e seeseesseseseeseeseeseeseeneesesseens 81

BIEBKPIOINLS ...ttt bbb ettt et ettt a e eb bt ae b b e nnenan 83
8 BIEAKPOINES ...ttt sttt ettt b e e bt e e b et e e et e e nenbenaeeae 85

8.1 How to Use Breakpoints during a Debugging SESSioNccccvevereeneeeneenes 86

8.1.1 Setting Simple Breakpointsccoeoveerernensieneesee e 86

8.1.2 Clearing, Disabling, and Enabling Breakpointscccccveeennnne. 87

8.2ThEBreak MENUccocvviiiiiiciiiee ettt 87

8.3 TheBreak WinGOW ..ot 89

8.4 The Breakpoint DialOgc.cccvveeeierinesiesieseesie e seeeees e ee st sre e sneean 90

ASSEMBIY LeVel DEDUGUING ...vevieeieieeieeieeee ettt sttt st be e sae b 95
9 Assembly Level DEDUGUINGvcueiveerieerieirienieieseete st sre e sreseene e 97

9.1 The CPU Register WINAOWccoueerieiriiiniiinieesieseeie e 97

9.2 The AsSEMDBIY WINAOWc.coviiiiiiiiiere s 98

9.3 The [/O POrtS WINAOWcuevuiuiriiiiiiriiirieseeseeie et 100

9.4 The FPU RegiSterS WIiNOWc.covceeirerecesese e se e e 101

9.5 The MMX ReGIStErS WINAOWcvevveiieieeeiceeeceees e 102

REMOLE DEDUGOING ...ttt ettt b e bbb b e b sae b b e 103

Table of Contents

10 REMOLE DEDUGOING -.eveeuerueruirterieriisiesie et eee e et sae b see e e et e e ne e eneeneas 105
JO.1 OVEIVIBIV ettt ettt b bbbt e e bt e e ne et ene b e 105

10.2 LinK DESCIIPLIONS ...c.vevieeiiieeiisiee ettt e 110

10.2.1 NOV (NOVEI SPX) oottt 110

10.2.2 NET (NEBIOS) ...ooeveeeeeeeeeeeeeeeseeeeeeeeeseesesssssessessesesssnsssnsansoons 111

10.2.3 PAR (Parallel)oooeeeeeeeeeeeeeeseeeeeeeeeeeseeeeseeeeese s st 111

10.2.4 SER (Srial) wvereererrnreieresreeeres et 112

10.2.5 WIN (Windows 3.x/95 Virtual DOS Maching)ccccceevevenenne. 114

10.2.6 NMP (NaMED PIPES) ...ccvveiiirerieieererieieesesesieiee e 115

10.2.7 VDM (Virtual DOS MaChiNg)ccoveerinrenieenineneeenesiseeees 116

10.2.8 TCP/IP (INternet PaCkets)coveeeeenrerieieineririeeesesieie e 117

10.3 Specifying Files on Remote and Local Machinesccoccoeveieiciencnnne 119
Interrupting A RUNNING PrOGIaIMcouiiiiiiiiirieisieesiese et 121
11 Interrupting @ RUNNING Programccccooeveveneneseseseseeseeseeseesesesesseesessessessessesseses 123
L1.1 OVEIVIEW oottt 123
LL1.2DOS ...ttt bbb 123
LL.3WINAOWS 3.X ettt 123

11.4 Windows NT, WINAOWS 95ccoveiieirieerieenreesreses e 123

LLE OS2 ettt bbb 124

LLB NEWEIE ..ottt e st st 124

@ 1) ST 125
Operating SYyStEM SPECITICS .vviviiiriieicceree e ere e resresresnens 127
12 Operating SyStem SPECITICS ..ooviiiiiiiiceseeee e e re s 129
12.1 Debugging 32-bit DOS Extender AppliCationsccccocevereeerienienieneniens 129

12.1.1 Debugging DOS/AG(W) 32-bit DOS Extender Applications 130

12.1.2 Debugging Phar Lap 32-bit DOS Extender Applications 130

12.2 Debugging AUtOCAD APPIICALIONSc.eoeeeereeeireeierieierieeseeesieesee s 131

12.3 Debugging aNOVEI NLM ..ot 132

12.4 Debugging GraphicS APPliCaLIONScovovveeririnirerieereereeere s 133

12.5 Debugging Windows 3.X AppliCatioNnSccccovereeneieneienereneneseneseene 133

12.6 Debugging Dynamic Link Librariesccccccoevevevivieseesiesesescese e 134

12.7 Disabling Use of 386/486 Debug REGISIENSccocveveeveceeere e 135

12.8 Debugging UNnder QNXc.ocecicicere e et snens 135

12.8.1 Debugging Under QNX Using the Postmortem Dump Facility .. 136
12.8.2 Search Order for Watcom Debugger Support Files under
QINX bbb bbb 138

Vi

Table of Contents

EXPIESSIONS ...ttt ettt ettt h e bbb bt se et e b se e e et e e e e e neea e e ae e Rt eb e e Rt e Rt ebeebeneeneentan 139
13 Watcom Debugger Expression Handlingcccoeereeneineininesceeeseeeseeeees 141
G50 I 1 o [FTox 4 o o SRS 141
13.2 General Rules of Expression Handlingcccoevveniinnieneenee e 141
13.3 Language Independent Variables and Constantsccccvcevereererreeenennenn 142
13.3.1 SymMbOol NAIMES ..o 142
13.3. 2 Line NUMDBENS ...oooviieiiieeiere e 145
13.3.3 CONSLANLScveeverieereneieie et e s 146
13.3.3.1 Integer CONSLANES ...ccveevveviieinir e 146
13.3.3.2 Real CONSLANLScccerueriirierierieseenie e 147
13.3.3.3 Complex Constant (FORTRAN OnNly)ccccoeveerennne 148
13.3.3.4 Character Constant (C Only)cceeverenrennereereeee 148
13.3.3.5 Character String Constant (FORTRAN Only) 149
13.3. 4 Memory REFEIENCES ..o 149
13.3.5 Predefined Debugger Variables ... 150
13.3.6 Register AQQregaeScccvvereerririeiereereeeseseeessesesre e see e ssesee s 151
13.4 Operators for the C Grammarccccevevereiereereeieeee e 152
13.4.1 Assignment Operators for the C Grammarccocveeveeievieinennn. 153
13.4.2 Logical Operatorsfor the C Grammarccoceveveierienenicniennens 154
13.4.3 Bit Operatorsfor the C Grammarccoceeevereneneneeneeieneeeenens 154
13.4.4 Relational Operatorsfor the C Grammarccoceeevereieieeicenens 154
13.4.5 Arithmetic/Logical Shift Operators for the C Grammar 155
13.4.6 Binary Arithmetic Operators for the C Grammarcccceceeeeee. 155
13.4.7 Unary Arithmetic Operators for the C Grammarcccceeenenee. 156
13.4.8 Specia Unary Operators for the C Grammarccoceevvevvvnennnn. 157
13.4.9 Binary Address Operator for the C Grammarccccceevvevvvrnennn. 158
13.4.10 Primary Expression Operators for the C Grammar 159
13.5 Operators for the C++ Grammarcccccceeievieveseniese s 160
13.5.1 Ambiguity Resolution in the C++ Grammarcccceeevveeieenenns 162
13.5.2 The "this" Operator for the C++ Grammarcccccecevererereenns 162
13.5.3 "operator" Functionsin the C++ Grammarcccoeeeeerierereenens 163
13.5.4 Scope Operator "::" for the C++ Grammarcccceevvenererennns 163
13.5.5 Constructor/Destructor Functionsin the C++ Grammar 164
13.6 Operators for the FORTRAN Gramimarccccveeerenerenereneseneseneeeneene 164
13.6.1 Assignment Operators for the FORTRAN Grammar 166
13.6.2 Logical Operators for the FORTRAN Grammarccccceeevenenee. 167
13.6.3 Bit Operators for the FORTRAN Grammarccccceeevevievereennn. 167
13.6.4 Relational Operators for the FORTRAN Grammarc......... 167
13.6.5 Arithmetic/Logical Shift Operators for the FORTRAN
GIaIMMEL ...ttt bbb e b e e e 168
13.6.6 Concatenation Operator for the FORTRAN Grammar 168

vii

Table of Contents

13.6.7 Binary Arithmetic Operators for the FORTRAN Grammar 168
13.6.8 Unary Arithmetic Operators for the FORTRAN Grammar 169
13.6.9 Specia Unary Operators for the FORTRAN Grammar 170
13.6.10 Binary Address Operator for the FORTRAN Grammar 170

13.6.11 Primary Expression Operators for the FORTRAN Grammar 170

N o 0= o= S 173
A. Debugger COMMBNGScceeiiiirieiieierie e steeee e ee e e st e e e te e e sseseesreeeesreeneens 175
A1 Syntax DEfINITIONSc.ooeeiieiirereeesee e e 175
A.2 CoMMEANG SUMMEAY ...t se e e e se e e 177
A 2L ACCEEIEE ... 177

A 22BIE3K oot e 178
A2BCEll oo e 179

A O L o (1 | = S 181

YN X @@ o)1 To 1 = TS 181

YN DT o] Y 181

A 27 DO (O 1) ottt 183

A 2B ERIOE ..ottt 183

A2 EXAMING ...ttt st sbe s e 183
Y (0 I = T o S 185
N | TSRS 185
N 2 o TR 185
A2LSHED oo e 186

A2 LA HOOK ..ttt ettt sttt re s 186
AL2ASIF s 187
A.2.16 INVOKE (OF) ettt te e e et snens 187
YN I o (o) TSRS 188

A2 L8 MOIfY o 188
A2LINEW oottt 189
Y O = N | | OSSR 189
YA =] o O (o)) IS 192
A.2.22 QUIT .ocviieeiieiceee ettt 194
YN (=l o] o R 194

A 224 REGISEEN ..ottt 194

A 225 REMAK (OF *) oottt 195
AL2.26 SEL .o 195

A L2.27 SHOW ettt e 195
Y S S (] o SRS 196
A.2.29 STACKPOS SINLEXPI™oouiiiiieirierierieie e 196
A.230 SYSEM (OF 1) it 196

Table of Contents

A.2.3L THIEBA (OF ~) vttt 197

AL2.32 TIBEE ottt e 197

A 233 UNAO o 198

A 2B VIBIW oottt 198

A 235 WHILE .ot 198

AL2.36 WINAOW ..ottt s e e ese e nnens 198

B. Predefined SYMDOISc.ooeiiiice e s ene 201
C. Wiring For Remote DebUJOINGcoceieeieiieeceesie et ees e sae et snae s 209
C.1 Serial Port Wiring CONSIAErationsccccovereereinerieneesiesie e 209

C.2 Parallel Port Wiring ConSiderationscocceeeerereneneseseesiesie e see e 210

List of Figures

Figure 1. The Debugger WINGOWc.ooiieiieieeie ettt st b e sbe b e e nean 30
Figure 2. A TYPICal DIBIOQcoeiieeiriiriiieiesie sttt bbbt e e et e e e seebesaesbesbesbesean 31
Figure 3. ThE OPtioNS DIAl0Qvceiveerieiriiirteiet ettt s e nnenes 36
Figure 4. The Window OptionNS DIiglOgcccoeeriereriiiriinininieesie st 38
Figure 5. THE LOG WINTOW ..ottt ettt 44
Figure 6. The ACCEErator WINGOWcoiiriiirieiieisieerees et 45
Figure 7. Entering @ SEarch SIHMNQ ..oovoeoeveieeeseeieeeeese s ste e e e e s e enessessesnesresseseesseneen 50
Figure 8. The SOUICE WINAOWccvcieeceeieeeese s st e e e et sae st st sae st e ae e e naeneenennennens 51
Figure 9. The MOdUIES WINCOWccveiviieieieieieee ettt sne st sr e e e aenaeneeneas 53
Figure 10. The GIODalS WINUOWccoiuieiiiieecete ettt st eena et e e ne e e e 55
Figure 11. The FUNCLIONS WINGOWoiiiiiiiee ettt sttt s 56
Figure 12. The IMageS WINUOWcoiiiirieieieneee st sb e b et b e e e e e e eneas 57
Figure 13. The REPIay WINUOWccooiriiiieiiriee ettt 65
Figure 14. The CallS WINGOWc.couiiiiiiiiinieeieeei ettt 66
Figure 15. The Thread WINGOWccoiiiriiirecrieeiererie st 67
Figure 16. The Watch and Variable WINAOWc..coveiriiiiiiieierese e 71
Figure 17. The MemOory WINGOWccooiieieeieereeieceeee st e e e sre s snesaesresresnenen 77
Figure 18. The Break WINAOWcccceieirieisese ettt st sae e e e e naenaenesnesnens 89
Figure 19. The Breakpoint DialOgcccccvieierererieiecieieeeeesese e e e st be st e e se e e e e eseesesnesresreseeseenean 20
Figure 20. The CPU ReQIiStEr WINUOWc.cceeieiieie ettt sre e sttt seeneenes 97
Figure 21. The ASSEMDIY WINAOWcc.oiuiiiiiieie ettt s 98
Figure 22. The /O WINAOW ...ttt be ettt et e se e saesbesae e 100
Figure 23. The FPU RegIiStErS WINUOWccoiuiiiiiiiisieieeieesee e 101
Figure 24. The MMX ReQISLErS WINUOWcoviuiiiiiriiiiieiriereste st 102
Figure 25. Serial Port Wiring SChEME ..o e 209
Figure 26. WATCOM Cable WiIring SChEME ..o e 211
Figure 27. LapLink Cable Wiring SChEMEccvcieieececerese e 211
Figure 28. Flying Dutchman Cable Wiring SChEMEcccovviiiviiise s 212

Introduction

Introduction

1 Overview

1.1 Introduction

The Watcom Debugger is a powerful debugging tool that helps you analyse your programs
and find out why they are not behaving as you expect. It alows you to single step through
your code, set break points based on complex conditions, modify variables and memory,
expand structures and classes and much more. With the debugger you can debug programs
that run on the following platforms:

* DOS

* Tenberry Software DOS/AG Extender
* Phar Lap DOS Extender

» Windows 3.x

e Windows NT

» Windows 95

* 16 and 32-hit 0S/2

* QONX

* Novell NetWare

* AutoCAD ADS

1.2 New Features

The latest version of the debugger contains many new features that you should know about.

1.2.1 User Interface

The debugger’ s user interface has been redesigned. There are GUI versions of the debugger
that run under Windows 3.x, Windows NT, Windows 95, and 32-bit OS/2. There are also
character mode versions that run under DOS, Windows 3.x, 0S/2, and QNX. All versions
share acommon user interface incorporating powerful features like context sensitive menus,
eliminating the need for command oriented debugging.

New Features 3

Introduction

1.2.2 Reverse Execution

The debugger keeps a history of your interactions that modify the state of the program you are
debugging. Thisincludes the effects of statementsin your program that you trace. The size
of thishistory islimited only by available memory. Undo and Redo allow you to step
backward and forward through this history. This allows you to reverse the effects of tracing
over simple statementsin your program. Y ou can aso reverse any accidental interactions that
affect your program’s state. See "The Undo Menu" on page 63.

1.2.3 Replay

The debugger keeps ahistory of all interactions that affect the execution of your program such
as setting break points and tracing. Replay allows you to restart the application and run the
application back to a previous point. Thisis particularly useful when you accidentally trace
over acal. Thisreplay information may be saved to afilein order to resume a debugging
session at alater date. See"The Replay Window" on page 65.

1.2.4 Stack Unwinding

Y ou can navigate up and down the program’s call stack to see where the currently executing
routine was called from. Asyou do this, al other windows in the debugger update
automatically. Local variablesin the calling routines will be displayed along with their
correct values. See"The Undo Menu" on page 63.

1.2.5 Simplified Breakpoints

The debugger alows you to set breakpoints when code is executed or datais modified. These
breakpoints may be conditional based on an expression or a countdown. Simple breakpoints
are created with a keystroke or single mouse click. More complex breakpoints are entered
using adialog. See"The Breakpoint Dialog" on page 90.

1.2.6 Context Sensitive Menus

4

Context sensitive menus are present in each debugger window. To use them, you select an
item from the the screen using the right mouse button. A menu containing alist of actions
appropriate for that item is displayed. You can use this capability to perform actions such as
displaying the value of an expression which you have selected from the source window.

New Features

Overview

1.2.7 Buttons

The debugger contains small buttons that appear on the left side of some windows. These
buttons are shortcuts for the most common operations. For example, you can set and clear a
breakpoint by clicking on the button to the left of a source line.

1.3 Common Menu ltems

The debugger’ s context sensitive menus contain many useful menu items. Each of these items
behave differently depending upon the selected item. A description of some of the commonly
found menu items follows:

I nspect

Modify

New

Delete

Source

Assembly

Functions

Inspect displaysthe selected item. The debugger determines how to best display
the selected item based on itstype. If you inspect avariable or an expression,
the debugger opens a new window showing its value. If you inspect a function,
the debugger positions the source code window at the function definition. If you
inspect a hexadecimal address from the assembly window, a window showing
memory at that addressis opened, and so on. Experimenting with inspect will
help you learn to use the debugger effectively.

Modify lets you change the selected item. Y ou will normally be prompted for a
new value. For example, select the name of a variable from any window and
choose Modify to changeits value.

New adds another item to alist of items displayed in awindow. For example,
choosing New in the Break Point window lets you create a new breakpoint.

Delete removes the selected item from the window. For example, you can use
Delete to remove a variable from the Watches window.

Source displays the source code associated with the selected item. The debugger
will reposition the source code window at the appropriate line. Selecting a
module name and choosing Source will display the modul€’ s source code.

Assembly positions the assembly code window at the code associated with the
selected item.

Functions shows alist of all functions associated with the selected item or

window. For example, choose Functionsin the source window to see alist of all
functions defined in that module.

Common Menu Iltems 5

Introduction

6

Watch

Break

Globals

Show

Type

Watch adds the selected variable or expression to the Watches window. This
allows you to watch its value change as the program runs. Note that thisisnot a
watchpoint. Execution will not stop when the variable changes. See the
chapter entitled "Breakpoints' on page 85 for information about setting
watchpoints.

Break sets a breakpoint based on the selected item. If avariableis selected, the
program will stop when the variableis modified. If afunction is selected, the
program will stop when the function executes.

Globals shows alist of global variables associated with the selected item.
Show will present a cascaded menu that let’ s you show things related to the
selected item. For example, you can use Line from the Show menu in the source

code window to see the line number of the selected line.

Type will present a cascaded menu that allows you to change the display type of
the window or selected item.

Common Menu Items

Preparing a Program to be
Debugged

Preparing a Program to be Debugged

2 Preparing a Program to be Debugged

Before you can debug a program, you must put debugging information into the code.

There are three different formats of debugging information that can be put into the code —
"Watcom", "Dwarf" or "Codeview". Starting with version 10.7, the default format is"Dwarf".
In earlier releases, the default was "Watcom". Although the debugger supports all three
formats, it isbest if you allow the default format to be generated.

To produce an executable that has debugging information, you need to:

1. specify the correct compiler options when you compile, and
2. gpecify the correct linker options when you link.

During development, use the d2 option of the compiler and use the debug all directive at the
beginning of your linker command line or at the beginning of your linker directive file. This
will ensure that maximum debugging information is available during your debugging session.
Change to the d1 option when you need to create a distribution version of your product. This
is necessary since the d2 option disables most compiler optimizations, whereas d1 will not
affect the quality of generated code. During production, you can use the linker’s symfile
option to put the d1 debugging information into a separate file. Thisletsyou distribute a
production quality executable yet still have the luxury of source line debugging when bugs are
reported.

2.1 Compiler Debugging Options

do The dO option will generate no debugging information. Thisisthe default
option.

d1 The d1 option will generate debugging information for global symbols and line
numbers.

di+ The d1+ option will generate debugging information for global symbolsand line

numbers, and typing information for local structs and arrays.

d2 The d2 option will generate the most debugging information that is normally
needed, including global information, line numbers, types, and local variables.

Compiler Debugging Options 9

Preparing a Program to be Debugged

d2i The d2i optionisidentical to d2 but does not permit inlining of functions. This
option can result in larger object and/or executable files (we are discussing both
"code" and "file" size here).

da2t The d2t option isidentical to d2 but does not include type name debugging
information. This option can result in smaller object and/or executable files (we
are discussing "file" size here).

d3 The d3 option will generate all debugging information generated by d2. In
addition, it will generate information about all types defined in a compilation
unit, regardless of whether they are used in that compilation unit. This option

will create very large objects and executable files. Do not useit unless you
want to have access to types that have no variables associated with them.

2.2 Linker Debugging Options

The linker isthe tool that puts together a complete program and sets up the debugging
information for all the modulesin the executable file. Thereisalinker directive that tells the
linker when it should include debugging information from the modules.

For "Dwarf" format debugging information, the directiveis:

DEBUG DWARF

For "Watcom" format debugging information, there are two levels of debugging information
that you should collect during thelink. They are:

DEBUG WATCOM LINES glabal names, source line numbers

DEBUG WATCOM ALL globa names, source line numbers, local variables, typing
information

Linker DEBUG directives are position dependent so you must make sure that the directive
precedes the object files and libraries that require debugging information.

For instance, if the file "mylink.Ink" contained:

10 Linker Debugging Options

Preparing a Program to be Debugged

#

invoke with: wink @ylink
#

file main

debug wat com |i nes
file input, output
debug wat com al
file process

then the files input and output will have global nhames and source line information available
during debugging. All debugging information in the file processis available during
debugging. No information is available for main except global names.

If you use a DEBUG directive anywhere, al files, including main, will have global name
information.

2.3 Debugger Settings

Y ou may encounter problemsif the debugger does not know where to find the source code
associated with your executable. The name of the source file included in the debugging
information is the path and the original name from the compiler’s command line. If the
original filenameis no longer valid (i.e., you have moved the source to another directory), you

must tell the debugger where to find the source files by choosing Source Path from the File
menu.

Debugger Settings 11

Preparing a Program to be Debugged

12 Debugger Settings

Starting the Debugger

Starting the Debugger

14

3 Starting Up the Debugger

The following topics are discussed:
* "Watcom Debugger Command Line"
* "Common Switches" on page 16

* "DOS and Windows Options" on page 19

"DOS Specific Options' on page 20

* "Windows Specific Options" on page 21

"QNX Options' on page 22

* "Environment Variables' on page 23

3.1 Watcom Debugger Command Line

There are several versions of the debugger.

binwiwd.exe Thisisthe DOS character-mode debugger.

binwiwdc.exe Thisis the Windows 3.x character-mode debugger.
binwiwdw.exe This is the Windows 3.x windowed (GUI) debugger.
binnt\wd.exe This is the Windows NT/95 character-mode debugger.
binnt\wdw.exe This is the Windows NT/95 windowed (GUI) debugger.
binp\wd.exe Thisisthe OS/2 character-mode debugger.

binp\wdw.exe Thisis the 0OS/2 windowed (GUI) debugger.

Watcom Debugger Command Line

15

Starting the Debugger

wd Thisisthe name of the debugger included with QNX.

See the sections entitled "Operating System Specifics' on page 129 and "Remote Debugging"
on page 105 for information on which version to select for your situation.

On the debugger command line, you can specify options that you want to use during your
debugging session. Acceptable option short forms are indicated in capital letters. For
example, the /TRap option may be shortened to /tr.

3.2 Common Switches

The following switches are applicable to all operating systems.

/TRap=trap_file[;trap_parm]
specifies an executable hel per program that the debugger uses to control the
application being debugged, or to communicate across aremote link. Itiscalled
a"trap file" since the interrupts used for debugging are sometimes called "traps’.
The trap option selects the appropriate trap file to use. This option must be
specified when remote debugging, debugging DOS extender applications,
debugging OS/2 exception handlers, or debugging an AutoCAD ADS
application.

The remote trap files themselves have startup parameters. Thisis specified
following the semi-colon. See "Remote Debugging" on page 105. Normally
you do not have to specify atrap file. If you do not specify the trap option, the
default trap file that supports local debugging isloaded. There are several
exceptions.

1. Todebug aTenberry Software 32-bit DOS/AG(W) application, you
must use /TRAP=RS.

2. Todebug aPhar Lap 32-bit application, you must use /TRAP=PLS,

3. Todebug an OS/2 exception handler, you must use /TRAP=STD 2

which tells the debugger to catch exceptions only on the second

chance (normally it would be the debugger that traps the exception).

To debug an AutoCAD add on, you must use /TRAP=ADS.

To debug an OS/2 16-bit application under Phar Lap’s RUN286 DOS

extender, you must use /TRAP=STD16.

o s

/LInes=n controlsthe number of lines used by a character mode debugger. The number of
lines available depends on the operating system and your video card. The values
25, 43 and 50 are often supported.

16 Common Switches

Starting Up the Debugger

/COlumns=n
controls the number of columns used by a character mode debugger. The
number of columns available depends on the operating system and your video
card. If your system does not support the requested number of columns, this
option isignored

/Invoke=file may be used to specify an aternate name for the debugger configuration file
which isto be used at start-up time. The default file nameis"WD.DBG".
Debugger configuration files are found in the current directory or one of the
directoriesin your PATH.

/INOInvoke specifiesthat the default debugger configuration file is not to be invoked.

/NOMouse requests that the debugger ignore any attached mouse. This may be necessary if
you are trying to debug mouse events received by your application. This option
ensures that the debugger will not interfere with the mouse.

/DYnamic=number
specifies the amount of dynamic storage that the debugger isto set aside for its
own use on startup. The default amount that is set aside is 500K bytes. The
larger the amount, the less memory will be available for the application to be
debugged. You only need to use this option if the debugger runs out of
memory, or is causing your application to run out of memory. If you are using
the remote debugging feature, the debugger will use as much available memory
as available.

INOEXxports specifiesthat no exports (system symbols) should be loaded. It helpsto speed
up load time when debugging remotely and marginally so when debugging
locally.

/LOcalinfo=local_file
isused primarily in conjunction with the remote debugging capabilities of the
debugger. It causes the debugger to use one or more local files as sources of
debugging information if the right conditions are met. When the debugger
observes that an executable file or Dynamic Link Library (DLL) isbeing loaded
with the same name (i.e., the path and extension have been stripped) as one of
the /localinfo files, then the named local fileis used as a source of debugging
information. The named file can be an executablefile, aDLL file (.dll), a
symbolic information file (.sym), or any other file with debugging information
attached.

Common Switches 17

Starting the Debugger

/DOwnload

Example:
wd /local =c:\dlls\nydl|l.sym/Iocal =c:\ exes\ nyexe. exe /tr=par
nyexe

In the above example, the debugger would obtain debugging information for any
executable or DLL called nyexe or mydl | from C: \ EXES\ MYEXE. EXE or
C: \ DLLS\ MYDLL. SYMrespectively. Note that no path searching is done for
local files. The debugger triesto open the file exactly as specified in the
localinfo option.

See the section entitled "Remote Debugging” on page 105 for an explanation of
remote debugging.

specifies that executable file to be debugged is to be downl oaded to the task
machine from the debugger machine. The debugger searches for the executable
filein the local path, and downloads it to the debug server’s current working
directory on the remote machine before starting to debug. Debugging
information is not downloaded, but is obtained locally, as in the localinfo option.
Note: Only the executable is downloaded; any required DLLs must be present
on the remote machine. Downloading isrelatively fast if you are using one of
the TCP/IP (TCP) or Netware (NOV) remote links. Be sure to specify thefile
extension if itisnot ".exe".

Example:
wd /tr=nov;john /downl oad sanpl e. exe
wd /tr=nov;john /downl oad sanple.nlm

The debugger does not erase the file when the debugging session ends. So if
you debug the application again, it will check the timestamp, and if thefileis
up-to-date, it doesn’t bother re-downloading it.

See the section entitled "Remote Debugging” on page 105 for an explanation of
remote debugging.

/REMotefiles

isused in conjunction with the remote debugging capabilities of the debugger. It
causes the debugger to look for all source files and debugger files on the remote
machine. When remotefilesis specified, all debugger files (except "trap" files)
and application source files are opened on the task machine rather than the
debugger machine. The trap file must be located on the debugger machine.

The PATH environment variable on the task machineis always used in locating
executable image files. When remotefiles is specified, the debugger also uses
the task machine’s PATH environment variable to locate debugger command

18 Common Switches

Starting Up the Debugger

files. Seethe section entitled "Remote Debugging” on page 105 for an
explanation of remote debugging. See the section entitled " Specifying Files on
Remote and Local Machines' on page 119 for an explanation of remote and
local file names.

INOFpu requests that the debugger ignore the presence of a math coprocessor.

/NOSymbols requests that the debugger omit all debugging information when loading an
executable image. This option isuseful if the debugger detects and triesto
load debugging information which is not valid.

/Dl p=dipname
used to load a non-default Debug Information Processor (DIP). Thisoptionis
generally not needed since the debugger loads al DIPs that it finds by default.
See "The Images Window" on page 57.

3.3 DOS and Windows Options

The following switches apply to the DOS (binw\wd) and Windows 3.x character-mode
(binw\wdc) debuggers. Refer to the sections called "DOS Specific Options' on page 20 and
"Windows Specific Options’ on page 21 for more switches relating to these environments.

/Monochrome
When two display devices are present in the system, this option indicates that the
Monochrome display isto be used as the debugger’ s output device, leaving the
Color display for the application to use. Use this option in conjunction with the
Two option described below.

/Color, /Colour
When two display devices are present in the system, this option indicates that the
Colour display isto be used as the debugger’ s output device. Thisoption is used
in conjunction with the Two option described below.

/Egad3 When an Enhanced Graphics Adapter (EGA) is present, 43 lines of output are
displayed by a character mode debugger.

/Vga50 When aVideo Graphics Array (VGA) is present, 50 lines of output are displayed
by a character mode debugger.

/Overwrite specifies that the debugger’ s output can overwrite program output. In this mode,
the application and the debugger are forced to share the same display area.

DOS and Windows Options 19

Starting the Debugger

/Two

Do not use this option if you wish to debug a DOS graphics-mode application.

specifies that a second monitor is connected to the system. If the monitor type
(Monaochrome, Color, Colour, Ega43, Vga50) is not specified then the monitor
that is not currently being used is selected for the debugger’ s screen. If the
monitor type is specified then the monitor corresponding to that type is used for
the debugger’s screen. This option may be used when debugging a DOS
graphics-mode application on the same machine and a second monitor is
available.

3.4 DOS Specific Options

Use the following switches for the DOS debuggers. For more DOS options, refer to the
section called "DOS and Windows Options" on page 19.

/Page

/Swap

specifies that page 0 of screen memory isto be used for the application’s screen
and that page 1 of screen memory should be used for the debugger’ s screen.
This option may be selected when using a graphics adapter such asthe CGA,
EGA or VGA. Using the Page option resultsin faster switching between the
application and debugger screens and makes use of the extra screen memory
available with the adapter. Thisisthe default display option. Do not use this
option if you wish to debug a DOS graphics-mode application.

specifies that the application’ s screen memory and the debugger’ s screen
memory are to be swapped back and forth using asingle page. The debugger
allocates an areain its own data space for the inactive screen. This reduces the
amount of memory available to the application. It also takes more time to switch
between the application and debugger screens. This option MUST be used
when debugging a DOS graphics-mode application and a second monitor is
not available.

The default display options are:

1. If you have atwo display system, the debugger uses both displays
with the program output appearing on the active monitor and the
debugger output appearing on the alternate monitor. In other words,
the Two option is selected by default.

2. If you have one of the CGA, EGA or VGA graphics adaptersinstalled
in your system then the debugger selects the Page option by default.

3. Under all other circumstances, the debugger selects the Svap option
by default.

20 DOS Specific Options

Starting Up the Debugger

/CHecksize=number
specifies the minimum amount of storage, in kilobytes, that the debugger isto
provide to DOS for the purpose of spawning a program while the debugger is
active. Thisoption isuseful when the application that is being debugged uses
up most or all of available storage, leaving insufficient memory to spawn
secondary programs. In order to provide the requested amount of free memory
to DOS, the debugger will checkpoint as much of the application as required.

Checkpointing involves temporarily storing a portion of the memory-resident
application on disk and then reusing the part of memory that it occupied for the
spawned program. When the spawned program terminates, the checkpointed
part of the application is restored to memory.

The default amount is OK bytes. In this case, the spawned program may or may
not be run depending on how much free storage is available to DOS to run the
program.

Warning: If the application being debugged installs one or more interrupt
handlers, the use of this option could hang your system. Y our
system could lock up if the debugger checkpoints a portion of the
application’s code that contains an interrupt handler.

/NOCHarremap
turns off the character re-mapping that the DOS debugger uses for displaying
dialogs and window frames. Use this option when trying to debug in an
environment where character remapping is not available. Windowed DOS
boxes under OS/2 do not support character re-mapping.

INOGraphicsmouse
Turn off the graphics mouse emulation code that makes the mouse cursor look

like an arrow instead of ablock. Use thisoption if the mouse cursor appears as
4 line drawing charactersinstead of an arrow.

3.5 Windows Specific Options

Use the following switches for the Windows character-mode debugger. Refer to the section
called "DOS and Windows Options’ on page 19 for more Windows options.

Windows Specific Options 21

Starting the Debugger

[Fastswap

specifies that Windows 3.x screen memory and the debugger’ s screen memory

are to be swapped back and forth using a technique that is faster than the default

method of screen swapping but not guaranteed to work for all video adapters.
This option appliesto Windows 3.x only. By default, the Windows 3.x version
of the debugger uses a more conservative (and slower) method that works with
all video adapters.

3.6 QNX Options

Y ou can use the following switch for the QNX debugger.

-Console=console_spec

-COlumns=n

specifies the virtual console to use for debugger windows. This may be a
console number as in the following example.

Example:
-consol e=2

Y ou may aso use afull device name.

Example:
-consol e=// 23/ dev/ ser 1

In this case, the debugger will use that device for it’s input and output. The
debugger/application screen flipping features will be disabled.

Y ou can a'so optionaly follow the device name with a colon and aterminal
type.

Example:
-con=/dev/ttypl: vt 240

Thiswill let the debugger know what kind of terminal it’ stalking to so it can
initialize the user interface appropriately.

specifies the number of columns of the screen/window that the debugger should

attempt to establish.

-XConfig=string

22 QNX Options

specifies a set of X Windows configuration options to pass to xqsh.

Starting Up the Debugger

3.7 Environment Variables

Y ou can use the WD environment variable to specify default options to be used by the
debugger. Once you have defined the environment variable, those options are used each time

you start the debugger.

3.7.1 WD Environment Variable

If the specification of an option involvesthe use of an "=" character, use the "#" character in
itsplace. Thisisrequired by the syntax of the "SET" command. Optionsfound in the
environment variable are processed before options specified on the command line. The
following example illustrates how to define default options for the debugger:

Example:
C>set wd=/ swap/ | i nes#50

3.7.2 WD Environment Variable in QNX

The following example illustrates how to define default options for the debugger under QNX:

Example:
$ export "WD=-nof pu -consol e=3"

Under QNX, care must be taken to specify the environment variable name entirely in
uppercase letters.

Environment Variables 23

Starting the Debugger

24 Environment Variables

Watcom Debugger Environment

Watcom Debugger Environment

26

4 The Watcom Debugger Environment

This chapter describes the interactions you need in order to use the debugger.

4.1 Debugger Windows

The debugger displaysitsinformation in windows. Both the character and the GUI-based
debuggers use similar conventions for window manipulation.

4.1.1 Window Controls

Each window has the following controls

Minimize, Maximize, Restore
Y ou can control the size of each window using the Minimize, Maximize, and
Restore buttons. The buttons appear on the top right corner of the window. The
Minimize button is the down arrow. When you click on the down arrow, the
window becomes an icon at the bottom of the screen. The Maximize buttonis
the up arrow. When you click on the up arrow, the window fills the whole
screen. The Restore button appears only when the window is maximized. Itis
an up and down arrow. Click on the Restore button to put the window back to
itsoriginal size.

Close Each window has a Close button in the top left corner. Double-click on this
button to close the window.

System Menu
The System Menu contains menu items that operate on the window. It contains:

* Restore

* Move

* Size

* Minimize
* Maximize

Debugger Windows 27

Watcom Debugger Environment

Y ou can activate the System Menu of the main window by clicking once on the
System Menu button (top, left-hand corner) or by typing ALT-Space. For
Microsoft Windows, you can type AL T-Hyphen to activate a child window’s
System Menu.

Scroll Bars Windows that contain information that cannot fit in the window have scroll bars.
Use the scroll bars to reposition the window so the information you want to see
isvisible. The small box in the scroll bar indicates the current scroll position in
the window.

Title Each window istitled so that you know what information it contains. Thetitle
appears in the bar at the top of the window.

Buttons Many windows have small buttons on the left hand side. These buttons are short
forms for performing the most common operations.

4.1.2 The Current Window

The current window is the one whose title bar is coloured. Press CTRL-TAB to move from
window to window.

4.1.3 Controlling the Size and Location of Windows
The following window operations are possible.
* "Moving Windows"
* "Resizing Windows" on page 29

* "Zooming Windows" on page 29

"Context Sensitive Pop-up Menus' on page 29

"Text Selection" on page 29

4.1.3.1 Moving Windows

To move awindow, click in the Title bar and drag it to anew location. Y ou can also choose
Move from the System Menu and use the cursor keys to reposition the window, pressing
ENTER when the window isin the right spot.

28 Debugger Windows

The Watcom Debugger Environment

4.1.3.2 Resizing Windows

In the GUI-based version of the debugger, you can resize awindow’ s width, height, or both.
Refer to the system documentation for details.

In the character-based version of the debugger, you can only resize awindow from the
corners. Move the cursor to any corner of thewindow. Click and drag the mouse to resize the
window.

Y ou can a so choose Size from the System Menu to change the size of awindow. Usethe
cursor keys to resize the window, press ENTER when the window isthe right size.

4.1.3.3 Zooming Windows

Choose Zoom from the Window menu to toggle awindow between its maximized and normal
sizes.

4.1.3.4 Context Sensitive Pop-up Menus

The debugger has context sensitive pop-up menus for each window in the application. You
can access the menu either by pressing the right mouse button in the window or by typing
the period (.) key. Y ou can then choose a menu item by typing the highlighted character or by
clicking the mouse on it.

If you have memorized the highlighted menu character, you can bypass the menu and activate
the menu item directly by pressing the CTRL key in conjunction with that character. The
items that appear in the menu depend on the current window. These menus are described in
detail throughout this document.

Note The Action item in the main menu is identical to the the context sensitive pop-up
menu for the current window and may be used instead of pop-up menus.

For more information on the choices presented in the pop-up menus, see the section entitled
"Variable and Watch Windows' on page 71.

4.1.3.5 Text Selection

Some windows, such as the Source and Assembly windows, allow you to select text. For
example, you might want to select a variable name or expression. Menu items will act on the
selected item.

Debugger Windows 29

Watcom Debugger Environment

Y ou can select text with either the left or right mouse button. If you use the right button, the
pop-up menu appears when you release the button. With the keyboard, hold SHIFT while

using the cursor keys. You can select a single character and the debugger will automatically
extend the selection to include the entire surrounding word.

4.2 Menus

At the top of the debugger window are a number of menu items. Y ou can select amenu item
with the mouse or by pressing ALT and the highlighted character from the menu title.

Many menu items have accelerators or keyboard equivalents. They appear to the right of the

menu item. Asyou learn the debugger, take time to learn the accelerators. They will help you
to use the debugger more effectively.

4.3 The Toolbar

| File Bun Break Code Data Undo Search Window Action Help
wo! | 13| B3 17| [| | @ o3¢
= Source: wndcreat.c | v| =
+
= if{ info->text == NULL) {
¢ buff[0] = "0"; |
¢ lelse{ /! might be clobbered by create
@ strepy{ buff. info->text);
+
=I Watches |v| = =IMudui |~
|+ B wndchar |+
wnd 0x0007:0x4960 || B wndchoo
qui 0x6C34:0x8A28 = wndclean:l
buff | | ||=gwndcreat
size 047 | «[+[«] [-
| Move to the currently executing location

Figure 1. The Debugger Window

30 The Toolbar

The Watcom Debugger Environment

The Toolbar appears under the menu in the GUI-based debugger. The buttonsin the Toolbar
are equivalent to menu selections. There are eight buttonsin the toolbar. Listed from left to
right, they are:

» Go from the Run menu

* Step Over from the Run menu

* Trace | nto from the Run menu

* Until Return from the Run menu

» Undo from the Undo menu

» Redo from the Undo menu

» Unwind Stack from the Undo menu
» Rewind Stack from the Undo menu
» Home from the Undo menu

See the sections entitled "The Run Menu" on page 61 and "The Undo Menu" on page 63 for
details.

4.4 Dialogs

Address Condition Break On
I |i== (8 Execute
) 1 Byte
Countdown——— Total Hits ! 2 Bytes
|) C s

rExecute When Hit

I [Resume [¥ Enabled

alue

extern void WndDestroy[a_window *wnd] {

I 114 l | Clear I | Symbol ... I | Cancel I

Figure 2. A Typical Dialog

Dialogs 31

Watcom Debugger Environment

Dialogs appear when you choose a menu item that does not perform an immediate action.
They allow you to make choices and set options. The dialogs contain the following:

Edit fields These are fields in which you can type information.
Buttons Y ou can click on buttons to perform actions.

Default button
The default button in adialog is highlighted. Y ou can select this button by
pressing ENTER.

Cancel All dialogs contain a cancel button. Choose the Cancel button or press ESC to
leave a dialog without saving or implementing changes you have made to the
dialog.

Check Boxes
Check boxes are used to control settings in the debugger. Click on the field, or
TAB to it and press SPACE to toggle the option between on and off.

Radio Buttons
Radio buttons present a set of mutually exclusive choices. Click on aradio
button to turn it on or press TAB to move to the group of radio buttons and use
the cursor keysto select aradio button. If this does not work, use the accelerator
key to turn on the desired radio button. Only one radio buttonison at all times.
When you select a different radio button, the currently selected oneis turned off.

Listboxes A list box containsalist of applicable items.

Drop-down List boxes
A drop down list box is alist that does not appear on the screen until you click
on the down arrow on the right of the box. Y ou may then select from alist of
options.

4.5 Accelerators

Accelerators are keys that you can pressin place of selecting a menu item or typing
commands. The debugger comes with a standard set of accelerators that you can view by
choosing Accelerators from the Window menu.

If you are used to the CodeView debugger, you should be comfortable with the Watcom

Debugger’s default set of accelerators. If you are used to using Turbo Debugger, you can
select accelerators which are similar to its accelerator definitions. To select Turbo

32 Accelerators

The Watcom Debugger Environment

accelerators, choose Accelerator from the Window menu then select TD Keys from the Action

menu.

4.5.1 Default Accelerators

The default accelerators are:

/

ALT-/
CTRL-\

?

F1

F2

F3

F4

FS

F6

F8

F9

F10
SHIFT-F9
CTRL-F4
CTRL-F5
CTRL-F6
CTRL-F9
CTRL-F10
ALT-F10
CTRL-TAB
CTRL-LEFT
CTRL-RIGHT
CTRL-UP
CTRL-DOWN
CTRL-BACKSPACE
ALT-1
ALT-2
ALT-3
ALT-4
ALT-5
ALT-6
ALT-7
ALT-8

Search/Find...

Search/Next

Search/Next

add a new expression to the Watch window
invoke help facility

Data/Registers

toggle between source level and assembly level debugging
Window/Application

Run/Go

Window/Next

Run/Trace Into

Break/Toggle

Run/Step Over

add a new item to the Watch window

close the current window

restore the current window to its normal size
rotate the current window

minimize the current window

maximize the current window

display the floating pop-up menu for the current window
rotate the current window

Undo/Undo

Undo/Redo

Undo/Unwind Stack

Undo/Rewind Stack

Undo/Home

Data/l ocals

Data/'Watches

Code/Source

File/View...

Data/Memory at...

Data/Memory at...

Data/Registers

Data/80x87 FPU

Accelerators

33

Watcom Debugger Environment

ALT-9 File/Command...
CTRL-z Window/Zoom
SPACE Run/Step Over

display the floating pop-up menu for the current window
File/Command...
Search/Match
Search/Next
Search/Previous
Undo/Undo
Undo/Redo

Break/At Cursor
Data/Memory at...
Run/Executeto...
move cursor left one
Run/Trace Into

move cursor down one
move CuUrsor up one
move cursor right one
Break/Toggle
Run/Next Sequential

X - —x—"7T—TocQeooccz>S 0

4.5.2 Turbo Emulation Accelerators

The Turbo emulation accelerators are:

F2 Break/Toggle

F3 Code/Modules

F4 Run/Run to Cursor

F5 Window/Zoom

F6 Window/Next

F7 Run/Trace Into

F8 Run/Step Over

F9 Run/Go

ALT-F2 Break/New...

ALT-F3 close the current window
ALT-F4 Undo/Undo

ALT-F5 Window/Application

ALT-F7 trace one assembly instruction
ALT-F8 Run/Until Return

ALT-F9 Run/Executeto...

ALT-F10 activate the pop-up menu for the current window

34 Accelerators

The Watcom Debugger Environment

CTRL-F2
CTRL-F4
CTRL-F7

Run/Restart
open a new Watch window
add anew item to the Watch window

4.6 The File Menu

The File menu contains items that allow you to perform file operations, such as:

Open Start debugging a new program, or to restart the current program with new
arguments.

View Display afilein awindow.

Command Enter a debugger command. For a description of debugger commands, refer to
the section entitled "Debugger Commands" on page 175.

Options Set the global debugging options. For afull description of these options, refer to
the section entitled "The Options Dialog" on page 36.

Window Options
Set the options for the debugger’ s various windows. For afull description of
these options, refer to the section entitled "The Window Options Dialog" on
page 38.

Save Setup Save the debugger’s current configuration. This saves the positions and sizes of
all windows aswell as all options and settings. By default, thisinformation is
saved into the file SETUP. DBG, however, you can save thisinformation into
another file to create alternate debugger configurations.

Load Setup Load aconfiguration previously saved using Save Setup.

Source Path Modify the list of directories which will be searched when the debugger is
searching for sourcefiles.

System The menu item appears only in the character-based version of the debugger. It
spawns a new operating system shell.

Exit Close the debugger.

The File Menu 35

Watcom Debugger Environment

4.6.1 The Options Dialog

[T Auto configuration zave
[® Warning Bell

[® Implicit Invoke

[® Recurzion Check

[X Screen Flip on Execution

[® Ignore Caze

Default Radix m

Double Clhick mS 200

| 1] 4 I Eﬂfaults | Cancel

Figure 3. The Options Dialog
The Options dialog allows you to change the following settings:

Auto configuration save When this option is on, the debugger automatically savesits
configuration upon exit.

Warning Bell When this option is on, the debugger will beep when awarning or error is
issued.

Implicit Invoke If this option is on, the debugger will treat an unknown command as the name

of acommand file and automatically try to invokeit. If thisoptionis off, you
must use the invoke command to invoke a command file.

36 The File Menu

The Watcom Debugger Environment

Under QNX, aconflict is possible when Invoke ison. A path specified for a
command file name is confused with the short form of the DO command (/). A
similar problem occurs under DOS, OS/2, Windows 3.x, Windows NT, or
Windows 95 when a drive specifier forms part of the file name.

Recursion Check Use this option to control the way tracing over recursive function callsis
handled. When this option is on, and you trace over afunction call, the
debugger will not stop if the function executes recursively.

Screen flip on execution Use this option to control whether the debugger automatically flips
the display to the application’s screen upon execution. Leave thisoption on if
you are using the character mode debugger to debug a Windows 3.x
application.

Ignore case This option controls whether or not case isignored or respected when the
debugger is searching for a string.

Default Radix Use this option to define the default radix used by the debugger. The debugger
associates aradix with each action automatically. For example, if you are asked
to enter an address, the debugger assumes base 16. If you double click on a
decimal value, you will be prompted for a decimal replacement value but there
are occasions when the debugger must use the default radix. 1f you add an
arbitrary expression to the Watches window, the default radix is used when
interpreting that expression. Y ou can specify any radix between 2 and 36.

Double click mS This option sets the amount of time in milliseconds allowed between two

clicks for the debugger to accept it asadouble click. Enter alarger valueif you
are having trouble with double clicks.

The File Menu 37

Watcom Debugger Environment

4.6.2 The Window Options Dialog

Window Settings
Azzsembly Globals
g [Typed
v Hexadecimal
File
WYariables Tab Interval
[v Protected
v Private Functions
[~ Whole Expression [Typed
[~ Functions
[Inherited Modules
[Compiler [Show All
[v Members
[~ Static

1] 4 | Defaults | Cancel

Figure 4. The Window Options Dialog

Use the Window Options dialog to define options related to the debugger’ s various windows.
All of these options appear in a dialog when you choose Window Options from the File menu.

The Window Options dialog allows you to set options for the following windows:

 Source

* Modules

* Functions

e Assembly

» Watches
 Locals

* File Variables
* Globals

» Variable

38 The File Menu

The Watcom Debugger Environment

4.6.2.1 The Assembly Options

The Assembly options alow you to define how your assembly code appears. Y ou can set the
following options:

Show Source
Turn on this option if you want source code intermixed with assembly code.

Hexadecimal

Turn on this option if you want immediate operands and values to be displayed
in hexadecimal.

4.6.2.2 The Variables Options

Use the Variable options to set display options and to specify which members of a class you
want displayed when a structure or class is expanded. Y ou can set:

Protected Display protected membersin expanded classes.

Private Display private members in expanded classes.

Whole Expression
Turn this option on to show the whole expression used to access fields and array
elementsinstead of just the element number or field name itself.

Functions Display C++ member functions in expanded classes.

Inherited Display inherited membersin expanded classes.

Compiler Display the compiler-generated members. Y ou will usually not want this option
turned on.

Members Display members of the 'this’ pointer asif they were local variables declared
within the member function.

Static Display static members.

4.6.2.3 The File Options

Y ou can set the display width of atab in the File options section. Thisvalue defaultsto 8
spaces.

The File Menu 39

Watcom Debugger Environment

4.6.2.4 The Functions and Globals Options

For both Functions and Global Variables windows, you can turn on the Typed Symbols
option. Thisrestrictsthe list of symbols to those that are defined in modules compiled with
full debugging information (d2 option).

4.6.2.5 The Modules Options

Y ou can turn on Show All to allow the Modules window to display all modulesin your
program, not just those which have been compiled with the d2 option.

4.7 The Code Menu

The Code menu allows you to display windows that show different information related to
your code. It contains the following items:

Source

Modules

Functions

Calls

Assembly

Threads

I mages

Replay

Open the Source window. It shows source code at the currently executing
location. See "The Source Window" on page 51.

Display a sorted list of modules contained in the current program. See "The
Modules Window" on page 53.

Open a sorted list of all functionsin the program. See "The Functions Window"
on page 56.

Open the Call History window. Thiswindow displaysthe program’s call stack.
See "The Calls Window" on page 66.

Open the Assembly window. It shows assembly code at the currently executing
location. See"The Assembly Window" on page 98.

Open alist of al threadsin your program and their current state. See"The
Thread Window" on page 67.

Open alist of the executable images which are related to the program being
debugged. Thisincludesalist of al loaded DLLs. See"The Images Window"
on page 57.

Open the program execution Replay window. Thiswindow allows you to restart
your application and replay your debugging session to any point. See"The
Replay Window" on page 65.

40 The Code Menu

The Watcom Debugger Environment

4.8 The Data Menu

The Data menu contains a number of windows that you can open to view the state of your
program’ s data. It contains the following items:

Watches

Locals

Open a Watches window. Y ou can add and delete variables from the Watches
window and use it to evaluate complex expressions and perform typecasting.
See "Variable and Watch Windows" on page 71.

Open aLocaswindow. It displaysthelocal variables of the currently executing
function. See"Variable and Watch Windows" on page 71.

File Variables

Globals

Registers

Open aFile Variableswindow. It containsalist of variables defined at file
scope in the current module. See "Variable and Watch Windows' on page 71.

Open a sorted sorted list of all global variables in your program. Values are not
displayed since it would make this window very expensive to update, but you
can select variables from this window and add them to a Watches window. See
"The Globals Window" on page 55.

Displays the CPU registers and their values. See"The CPU Register Window"
on page 97.

FPU Registers

Displaysthe FPU registers and their values. See"The FPU Registers Window"
on page 101.

MMX Registers

Stack

1/0O Ports

Memory at...

Displaysthe MMX (multi-media extension) registers and their values. See"The
MMX Registers Window" on page 102.

Displays memory at the stack pointer. See"The Memory and Stack Windows"
on page 77.

Open awindow that lets you manipulate the 1/O address space of the machine.
See "The 1/O Ports Window" on page 100.

Display memory at agiven address. See "The Memory and Stack Windows' on
page 77.

The Data Menu 41

Watcom Debugger Environment

Log

Displays debugger messages and the output from debugger commands. See
"The Log Window" on page 44.

4.9 The Window Menu

The Window menu allows you to control and arrange the windows on your screen.

The Window menu contains the following items:

Application

ToLog

ToFile

Zoom

Next

Accelerator

Switch to the output screen of the application. Press any key to return to the
debugger.

Save the current window’ s contents to the log window. Open the Log window
to see the contents.

Save the contents of the current window to afile. You must enter afile name
and choose the drive and directory to which you want to save the information.
Thisisuseful for comparing program state between debugging sessions.

Change the size of the current window. Zoom toggles the current window
between its normal and maximum sizes.

Rotate through the windows, choosing a new current window.

Open the Accelerator window. Thiswindow allows you to inspect and modify
the debugger’ s keyboard shortcut keys.

4.10 The Action Menu

Most windows in the debugger have a context sensitive pop-up menu. The Action menu will
contain the same menu items as the current window’ s pop-up menu. It may be used asan
alternative to the pop-up menus. As an alternative to selecting text with the right mouse
button and using the pop-up menu, you can select text with the left mouse button or keyboard
and use the Action menu. For more information on the choices presented in the pop-up
menus, see the section entitled "Variable and Watch Windows' on page 71.

42 The Action Menu

The Watcom Debugger Environment

4.11 The Help Menu

The Help menu contains items that let you use the on-line help facility. They are:

Contents Show the main table of contents of the on-line help information. Thisis
equivalent to pressing F1.

On Help Display help about how to use the on-line help facility. This menu item is not
available in character-mode versions of the debugger.

Search Search the on-line help for atopic. Thismenuitemisnot availablein
character-mode versions of the debugger.

About Display the "about box". It contains the copyright and version information of
the debugger.

4.12 The Status Window

The Status window appears at the bottom of the debugger screen. Asyou drag the mouse over
amenu item, descriptive text about that menu item appears in the toolbar. Messages about the
current status of the program and debugger warning messages also appear in the Status
window.

The Log Window 43

Watcom Debugger Environment

4.13 The Log Window

-Eilﬂ Bun Break Code Data Undo Search Yindow Action Help

Break on execute: WndCreateWithStructiwndcreat{@49)
=======| Walches |=======
[*]init { struct}

qui 0x6C34:0xBA2B
=======| Registers |=======
Ao 2467 Bx:0000 CX:0000 DX:1193 S10001 DI:4960 BP:8AZA
SP:88ED IP:A770 D5:2467 ES:2467 55:2467 C5:24CF FL:0302
c:0 P:0 A0 Z:0 50 K1 DD
0: 0
Break on execute: WndCreateWithStructiwndcreat{@49)
=======| Registers |=======
WOCBIEE BXBIEE CX:001A DX:2467 S51:0032 DI:001A BPBAIC
SP:B9EA IP5733 DS:2467 ES:2467 55:2467 CS5:24CF FL:0202
c:0 P:0 A0 Z:0 50 1 DD

([

Figure5. The Log Window

Choose Log from the Data menu to see the Log window. The Log window displays several
different types of messages, including:

* status messages such as break point notification
* warning and error messages
* output from debugger commands

Y ou can send the contents of any window to the Log window by selecting To Log from the
Window menu. Thisallows you to save awindow’s contents and review it later.

44 The Log Window

The Watcom Debugger Environment

4.14 The Accelerator Window

File Bun Break Code Data Undo Search Window Action Help
Key Name Window Action type Definition L+
v assembly popup Module...

X all menu Run/Next Sequen
CTRL-BACKSPACE all menu Undo/Home
ALT-f all menu Search/Next
F1 all command help
F2 all menu DatafReqisters :I
F3 all command if { dbg$src) {dis
F4 all menu Window/Applicati
F5 all menu Run/Go
Fb all menu YWindow/MNext
F& all menu RunfTrace Into
Fa all menu Break/Toggle
all menu Run{Step Over 2

T T St

Figure 6. The Accelerator Window

The Accelerator window allows you to control the accelerators or keyboard equival ents used
by the debugger. Choose Accelerator from the Window menu to open thiswindow. The
window displays 4 itemsrelating to each accelerator definition. They are the key name, the
window to which the accelerator applies, the type of action that the accel erator defines, and
the specifics of that action.

Accelerators may either apply to all windows or to a specific window. You could define F2 to
perform a different action depending upon which window is current. Accelerators which
apply to al windows will have awindow type of all.

An accelerator can define one of three action types. They are:

The Accelerator Window 45

Watcom Debugger Environment

pop-up Activate a pop-up menu item in the current window.

menu Activate an item from the main menu.

command Perform an arbitrary debugger command.

Y ou can modify an element of an accelerator definition by double-clicking onit, or by

cursoring to it and pressing ENTER. Press the right mouse button to access the following

menu items:

Modify Change the currently selected element of an accelerator assignment. If the key
name is selected, the you will be prompted to type a new key. If the window
name is selected, you will be presented with alist of possible window classes. If
the action type or details are selected, you will be presented with amenu in order
to pick the menu item which will be attached to the accelerator.

New Add anew accelerator assignment. Y ou will be prompted for all details.

Delete Delete the selected accelerator.

TD Keys Use an approximation of Borland Turbo Debugger’ s accelerators.

WD Keys Usethe default set of accelerators. If you are familiar with CodeView, you will
be comfortable with these key assignments.

46 The Accelerator Window

Navigating Through a Program

Navigating Through a Program

48

5 Navigating Through a Program

This section describes how to use the debugger to browse through your program.

5.1 The Search Menu

The Search menu allows you to search awindow for agiven string. It contains the following

items:;

Find Search the current window for the first appearance of agiven string. Y ou will
be prompted for the string. See "Entering Search Strings' on page 50.

Next Find a subsequent occurrence of a search string.

Previous Find aprevious occurrence of a search string.

All Modules Thiswill search through the source code of all the modules contained in your
program for agiven string. See "Entering Search Strings" on page 50.

Match Find a string in a sorted window by incremental matching. Once you select
match, the text you type appears in the status window, and the window you are
searching repositions itself as you type each character. Press ESC to leave this
mode.

The Search Menu 49

Navigating Through a Program

5.1.1 Entering Search Strings

I a string|

Thesze are
other strings that
I've zearch for

[Regular_Expreszion

¥ lgnore Case

| Hext lEleviuus || Cancel I

Figure7. Entering a search string

When you choose Find from the Search menu or All Modules from the Search menu, you
must enter the search string that you are looking for and set the parameters for the search. The
Search screen consists of the following items:

Enter Search String
Enter the string to be found in this edit box. The larger list below shows other

strings that you have searched for during this debugging session. Y ou can select
these by clicking on them or by using the up and down arrow keys. The most
recent search string appears at the top of thelist.

Regular Expression
Check thisbox if the string is to be interpreted as aregular expression. Y ou can
click on the Edit button to edit the set of regular expression characters that will
be used. For adescription of regular expressions, see the Editor manual.

Ignore Case Check this box if you want the debugger to match the search string regardless of
case.

50 The Search Menu

Navigating Through a Program

5.2 The Source Window

-Eilﬂ Bun Break Code Data Undo Search Yindow Action Help

_oet wnd, W5W_ACTIVE); Lt

gui = GUICreateWindow(&init);
if{ gui == NULL) {
wWndFree(>extra);
wWndFree{ wnd);
wWndNoMemory();
return{ NULL };
}else {
if(buff[0] 1= "\0') WndSetTitle{ wnd. buff):]

560600 o

@

++NumWindows;
return{ wnd J;

}

LI

Il « | +

Figure 8. The Source Window

The Source window displays your program’s source code. Asyou trace through your
program, it repositions itself at the currently execution location. If you have an Assembly
window open, the Source and Assembly windows will always be positioned at the same code.
If you scroll in one, the other follows.

Source lines that have code associated with them have a button at the left of the screen. You
can click on this button to set, disable and clear break points.

Y ou can Inspect any item displayed in the source window by double-clicking on it, or by

cursoring to it and pressing ENTER. Press the right mouse button to access the following
pop-up menu items:

The Source Window 51

Navigating Through a Program

I nspect Inspect the selected item in an appropriate window. Y ou can select function
names, variable names, or any valid expression.

Run to Cursor
Resume program execution until the selected line is executed.

Break Add a breakpoint based on the selected text. If avariableis selected, the
program will stop when its value changes. If afunction nameis selected the
program will stop when that function is executed. This does not set a break at
thecurrent line. Use Toggle from the Break menu or At Cursor from the
Break menu to set a breakpoint at the current line.

Enter Function
Resume program execution until the selected function is entered.

Watch Add the selected item to the Watches window for further inspection or
modification.

Find Search for other occurrences of the selected string in the Source window.

Home Reposition the window to show the currently executing location. The cursor

will move to the next line of the program to be executed.

Show/Assembly
Show the assembly code associated with the selected line.

Show/Functions
Show thelist of all functions contained in the sourcefile.

Show/Address
Reposition the window at a new address. Y ou will be prompted for an
expression. Normally you would type a function name but you can type any
expression that resolves to a code address. For example, you might type the
name of avariable that contains a pointer to afunction. See "Watcom Debugger
Expression Handling" on page 141.

Show/Module
Show the code for adifferent module. Y ou will be prompted for itsnamein a
dialog. Asashortcut, you can type the beginning of a module name and click
the Module... button. Thiswill display alist of all modules that start with the
text you typed.

Show/Line Moveto adifferent sourceline. You can also find out what line you are looking
at. The edit field will be initialized with the current line number.

52 The Source Window

Navigating Through a Program

5.3 The File Window

A File window is Similar to a source window except that it displays afile which is not part of
the program being debugged. Menu items related to execution such as Break from the pop-up
menu are not available.

5.4 The Modules Window

-Eilﬂ Bun Break Code Data Undo Search Yindow Action Help

W g
wndchar
wndchoos
wndclean
wndcreat
wndcrsr
wndcurr
wnddirt
wnddlg
wnddoin
wndendhk

wndfdlg :I
wndfonhk
wndfont
wndfref

ODOD0OOCOCDOCOD0O0OG0D0D0 0|,

Figure 9. The Modules Window

The Modules window displays alist of the modules that make up the current program. To
open the Modules window, choose Modules from the Code menu.

Three items are displayed for each module. At the left, thereisabutton. You can click the
mouse on it to see the source or assembly associated with the module. This can aso be
accomplished by double-clicking on the module name or cursoring to it and pressing ENTER.
Next isthe module name. Third, if the moduleis contained in an executable image other than
the one being debugged, is the name of that image.

The Modules Window 53

Navigating Through a Program

Since this window is sorted Match from the Search menu can be used to find amodule.
Choose Match from the Search menu (or press =) and begin typing the name of the module.

Press the right mouse button to access the following pop-up menu items:
Source Show the source code associated with the selected module.
Assembly Show the assembly code associated with the selected module.
Functions Show thelist of al functions contained in this module.

Break All Set abreakpoint at each function in this module.

Clear All Delete dl breakpoints which are set at addresses with this module. This does not
affect break-on-write bresk points.

Show All Toggle between showing al modules and just modul es which were compiled
with full debugging information (d2). This menu item sets optionson a
per-window basis, overriding the global settings. When you use the menu item
to change these settings, they will not be saved between debugging sessions. To
change an option permanently, see "The Window Options Dialog" on page 38.

54 The Globals Window

Navigating Through a Program

5.5 The Globals Window

-Eilﬂ Bun Break Code Data Undo Search Yindow Action Help

Ctl3dSubclassDig L+
Ctl3dUnreqister
currlsDown
Currltem
CurrMDIWindow
curr ool

Default :I
DialogHead
DigChosen
DlgColours
DigControl
DigFont

DigModal
ExitSF
HfAddMDlActions

Figure 10. The Globals Window

Y ou can open the Globals window by choosing Globals from the Data menu. Thiswindow
displays the names of al global variables defined in the program. You can add a variable to
the Watches window by double-clicking on it, or cursoring to it and pressing ENTER.

Press the right mouse button to access the following pop-up menu items:
Watch Add the selected variable to the Watches window.

Raw Memory
Display the memory associated with the selected variable.

Typed Symbols
Toggle between showing all symbols and just those defined in modules
compiled with the d2 option. Variables from the C/C++ library and assembly
code are suppressed. This menu item sets options on a per-window basis,
overriding the global settings. When you use the menu item to change these

The Globals Window 55

Navigating Through a Program

settings, they will not be saved between debugging sessions. To change an
option permanently, see "The Window Options Dialog" on page 38.

5.6 The Functions Window

-Eilﬂ Bun Break Code Data Undo Search Yindow Action Help

o T
¢ ToolBarGetState

@ ToolBarlnit

¢ ToolBarRedrawButtons
¢ ToolBarSetState

¢ ToolBarWindow

¢ ToolBaryndFroc

Ll Indate ToolBar

¢ W1EwventProc

< W1Fini

¢ W1GetLine

< Wllnit j
¢ WikMenultem
¢ WiModify

¢ WiNumRows
1¥* W10pen 4

Figure 11. The Functions Window

The Functions window can display alist of all functions contained in a module, executable

image or program. To the left of each function nameis a button. Y ou can click on these

buttons to set and clear breakpoints at the various functions. This can also be accomplished

by double-clicking on the function name or cursoring to afunction and pressing ENTER.

Press the right mouse button to access the following pop-up menu items:

Break Set a breakpoint at the selected function. A dialog will appear so that you can
fill in detailed breakpoint information. For more information, refer to the
section entitled "The Breakpoint Dialog" on page 90.

Source Show the source code for the selected function.

56 The Functions Window

Navigating Through a Program

Assembly Show the assembly code associated with the selected function.

Typed Symbols
Toggle between showing all symbols and just those defined in modules
compiled with the d2 option. Variables from the C/C++ library and assembly
code are suppressed. This menu item sets options on a per-window basis,
overriding the global settings. When you use the menu item to change these
settings, they will not be saved between debugging sessions. To change an
option permanently, see "The Window Options Dialog" on page 38.

5.7 The Images Window

=| The WATCOM Debugger [~]-
File Bun Break Code Data Undo Search Window Action Help
= | Images | < | -
E xecutable File Debug Information L+
app.exe app.exe ==

C:AWINDOWSASYSTEMAKRNL386.EXE
C:AWINDOWSASYSTEMASYSTEM.DRY
C:\WINDOWSASYSTEMAKEYBEDARD. DRY
C:AWINDOWSASYSTEMALMOUSE . DRY

CAWINDOWSASYSTEMAYGA DRY

C:AWINDOWSASYSTEMAUSER. EXE
C:AWINDOWSASYSTEMAKBDUS DLL
C:AWINDOWSASYSTEMAMODERN.FON
C:AWINDOWSASYSTEMASCRIPT.FON
C:AWINDOWSASYSTEMAROMAN . FON
C:AWINDOWSASYSTEMASMALLE FON
C:AWINDOWSASYSTEMASYMBOLE FON
C:AWINDOWSASYSTEMASERIFE.FON
C:AWINDOWSASYSTEMACOURE FON

I AWINDOWSASYSTEMASSERIFE.FON

C:AWINDOWSASYSTEMAMMSOUND . DRY

CAWINDOWSASYSTEMAKRNL386.EXE
CAWINDOWSASYSTEMASYSTEM.DRY
C:AWINDOWSASYSTEMAKEYBODARD. DR
C:AWINDOWSASYSTEMALMOUSE.DRY
C:AWINDOWSASYSTEMAYGA.DRY
CAWINDOWSASYSTEMAMMSOUND . DRY
CAWINDOWSASYSTEMAUSER . EXE
CAWINDOWSASYSTEMAKBDUS DLL
CAWINDOWSASYSTEMAMODERN . FON
CAWINDOWSASYSTEMASCRIPT .FON
CAWINDOWSASYSTEMAROMAN FON
CAWINDOWSASYSTEMASMALLE FON
CAWINDOWSASYSTEMASYMBOLE _FOM
CAWINDOWSASYSTEMASERIFE.FON
CAWINDOWSASYSTEMACOURE _FON

C:AWINDOWSASYSTEMASSERIFE.FON | +]

|[KI

[+

Figure 12. The Images Window

Choose Images from the Code menu to open the Images window. It displaysalist of
executable images associated with the program that you are currently debugging. Executable
images include the program executable, DLLs (Windows, OS/2 and Windows NT), and
NLMs (NetWare). Thiswindow displays the name of the executable image, the name of the
symbolic debugging information file (if available), and the debugging information type.

The Images Window 57

Navigating Through a Program

Different debugging information types are generated by different compilers.

Valid information types are:

WATCOM Thisinformation is generated by the WATCOM compilers.

DWARF Thisinformation is optionally generated by the WATCOM compilers.

CodeView Several other compilers, including Microsoft, generate CodeView style
information.

EXPORTS Thisinformation is contained in the executable file itself, and is used by the
operating system. Under OS/2, Windows and Windows NT, DLL s have export
tables which define the names and addresses of entry points. Exports
information lets you see the names of system entry points and APIs. Novell
NLMs aso have entry point tables. In addition, they may have Novell style
debugging information, created with Novell’ s linker (NLMLINK) or using the
WATCOM Linker's"debug novell” option. Thisinformation is made available
to the debugger.

Y ou can add new debugging information to an image by double-clicking on the image name
or cursoring to it and pressing ENTER.

Press the right mouse button to access the following pop-up menu items:

New Symbols
Add symbolic debugging information for the selected image. Thisisuseful if
you know that a separate debug information file contains the appropriate
debugging information that was not found by the debugger.

Delete Symbols
Delete any symbolic debugging information associated with the selected image.

Modules Show alist of modules contained in the selected image.
Functions Show alist of functions contained in the selected image.

Globals Show alist of all global variables contained in the selected image.

58 The Images Window

Controlling Program Execution

Controlling Program Execution

60

6 Controlling Program Execution

This section describes how you can control the execution of your program as you debug it.

6.1 The Run Menu

The Run menu controls how your program executes. It contains the following items.

Go

Start or resume program execution. Execution resumes at the current location
and will not stop until a breakpoint is encountered, an error occurs, or your
program terminates.

Run to Cursor

Executeto

Step Over

Tracelnto

Resume program execution until it executes the location of the cursor in the
Source or Assembly window. Execution will stop before the cursor position if a
breakpoint is encountered or an error occurs.

Resume program execution until it executes a specified address. Y ou will be
prompted to enter an address. It can be the name of afunction or an expression
that resolves to a code address. See "Watcom Debugger Expression Handling"
on page 141. Inthe dialog, you can click the Symbols... button as a shortcut.

Y ou can type apartial symbol name like f 0o and the Symbol button will show
you alist of symbolsthat start with f 00. Y ou can then choose one of these
symbols by clicking on it or hitting ENTER. Note that the first time you use the
Symbols... inadebugging session, it will take awhile as the debugger sorts the
symbol table for the program.

If your program encounters a breakpoint or an error occurs before the specified
address is executed, your request to stop at the given addressis ignored.

Trace a single source or assembly line depending on whether the source or
assembly window is current. Step Over will not step into any function calls.

Thisissimilar to Step Over except that it will step into any function calls.

Next Sequential

Run until the program executes the next sequential source line or assembly

The Run Menu 61

Controlling Program Execution

Until Return

instruction. Thisisuseful if the program is executing the last statement in aloop
and you wish to execute until the loop terminates. When using this command,
be sure that the execution path will eventually execute the next statement or
instruction. |f execution fails to reach this point then the program may continue
to execute until completion. This situation is like setting a breakpoint at a
statement or assembly instruction which will never be executed and then issuing
a GO command. In this situation, the application would execute until an error
occurred or another breakpoint was encountered.

Resume program execution until the currently executing function returns.
Execution terminates prior to thisif an error occurs or a breakpoint is
encountered.

Skip to Cursor

Restart

Reposition the instruction pointer at the cursor position, "skipping" all
instructions in between. When you continue execution, the program continues
from thispoint. Thisisuseful if you want to skip an offending line or re-execute
something. Use this menu item with caution. If you skip to an instruction
which isnot in the current function or skip to code that expects a different
program state, your program could crash.

Restart your program from the beginning. All breakpointsin your program will
be preserved. Breakpointsin DLLswill not be preserved.

Debug Startup

Restart your program from the beginning but stop before system initialization.
Normally the debugger puts you at the main (fmain, winmain, etc.) entry point in
your application. This option will allow you to break much earlier in the
initialization process. Thisfeatureisuseful for debugging run-time startup code,
initializers, and constructors for static C++ objects.

For DOS, Windows 3.x and Netware, the debugger will put you at the assembly
entry point of your application (i.e., it doesn’t run the "progstart” hook).

Windows 3.x runs each DLL’s startup code as it loads it, and the static DLLs are
really loaded by the run-time startup code, so, to debug the startup code for a
statically linked Windows 3.x DLL, you need to do the following.

1. Select Debug Startup from the Run menu.

2. Select On Image Load from the Break menu. Type the name of the
DLL inwhich you are interested.

62 The Run Menu

Controlling Program Execution

3. Sdect Go from the Run menu

For OS/2 and Windows NT, the debugger will put you at a point after all DLLs
have been loaded, but before any DLL initialization routines are called. This
enables you to set breakpointsin your statically referenced DLL’ s startup code.

If you have hard-coded int3 instructions in your DLL startup, the debugger will
skip them, unless you use Debug Startup from the Run menu.

All breakpoints in your program will be preserved. Breakpointsin DLLswill
not be preserved.

Save Save the current debugging session to afile. The file contains commands that
will alow the debugger to play your debugging session back to its current point
in alater session. See"The Replay Window" on page 65.

Restore Restore a saved debugging session. If you run the program with different input
or if the program is a multi-threaded application, this option may not work
properly since external factors may have affected program execution. See"The
Replay Window" on page 65.

6.2 The Undo Menu

The debugger keeps an execution history as you debug your program. This history is
accessible using the Undo menu. The effect of program statements as you single step through
your program are recorded. All interactionsthat allow you to modify the state of your
program including modifying variable values, changing memory and registers are also
recorded. Undo and Redo let you browse backward and forward through this execution
history. Asyou use these menu items, all recorded effects are undone or redone, and each of
the debugger’ s windows are updated accordingly.

Y ou can resume program execution at any previous point in the history. The program history
has no size restrictions aside from the amount of memory available to the debugger, so
theoretically you could single step through your entire program and then executeit in reverse.
There are several practical problemsthat get in the way of this. When you single step over a
call or interrupt instruction, or let the program run normally, the debugger has no way of
knowing what kind of side effects occurred. No attempt is made to discover and record these
side effects, but the fact that you did step over acall isrecorded. If you try to resume program
execution from a point prior to a side effect, the debugger will give you athe option to
continue or back out of the operation. Use caution if you choose to continue. If an important
side effect is duplicated, you program could crash. Of course reversing execution over
functions with no side effects is harmless, and can be a useful debugging technique. If you

The Undo Menu 63

Controlling Program Execution

have accidentally stepped over acall that does have a side effect, you can use Replay to
restore your program state.

Unwind and Rewind move the debugger’ s state up and down the call stack. Like Undo, all
windows are updated as you browse up and down the stack, and you can resume execution
from apoint up the call stack. A warning will be issued if you try resuming from a point up
the call stack since the debugger cannot completely undo the effects of the call.

Unwind is particularly useful when your program crashes in aroutine that does not contain
debugging information. strcpy() isagood example of this. You can use Unwind to find the
call site and inspect the parameters that caused the problem.

Theruntime library detects certain classes of errors and diagnoses them as fatal runtime
errors. If this occurs when you are debugging, the debugger will be activated and the error
message will be displayed. For example, throwing an exception in C++ without having a
catch in placeisafatal runtime error. In C, the abort() and assert() functions are fatal errors.
When this happens, you will be positioned in an internal C library call. Y ou can use Unwind
to find the point in your source code that initiated the error condition.

When Unwind and Undo are used in conjunction, Undo is the primary operation and Unwind
issecondary. Y ou can Undo to a previous point in the history and then Unwind the stack. If
you Unwind the stack first and then use Undo, the Unwind has no effect.

If you modify the machine state in any way when you are browsing backward through the
execution history, all forward information from that point is discarded. 1f you have browsed
backward over a side effect the debugger will give you the option of canceling any such
operation.

The Undo menu contains the following items.

Undo Browse backwards through the program execution history.
Redo Browse forward through the program execution history.
Unwind Stack

Move up the call stack onelevel.

Rewind Stack
Move down the call stack one level.

Home Return to the currently executing location, reversing the effects of all Undo and
Unwind operations.

64 The Undo Menu

Controlling Program Execution

6.3 The Replay Window

-Eilﬂ Bun Break Code Data Undo Search Yindow Action Help

e

| wstart_: jmp 0x0317 new/program
YWinkdain: push ds breakfsetfinds
Winkain: push ds go

windowl @WI1Fini+0x2F: num_rows = wl->num_rows; tracefsourcefi
windowl @WI1Fini+0x38: for(i=0:i < num_rows; ++i} { tracefsource/y

Nkt lgiiEre(e WndFree{ wl->rows[i].pieces). qgo

--¢II I I*'.

Figure 13. The Replay Window

Choose Replay from the Code menu to open the Replay window. Thiswindow displays each
of the steps that you have performed during this debugging session that might have affected
program flow. There are three items displayed in the replay window. First isthe address the
program was executing when you took some action that could affect the program. These
actions include setting break points, tracing and modifying memory. Second is the source or
assembly code found at that address. Third is acommand in the debugger’s command
language that will duplicate the action you took. The most common use for Replay is when
you accidentally step over afunction call, or the program unexpectedly runs to completion. If
this happens, you can open the replay window, and replay you debugging session up to any
point prior to the last action you took.

There are special cases where replay will not perform as expected. Sincereplay is essentially
the same as playing your keystrokes and mouse interactions back to the debugger, your
program must behave identically on a subsequent run. Any keyboard or mouse interaction
that your program expects must be entered the same way. If your program expects an input
file, you must run it on the same data set. Y our program should not behave randomly or
handle asynchronous events. Finally, your program should not be multi-threaded. If you have

The Replay Window 65

Controlling Program Execution

just been tracing one thread, your program will replay correctly, but multiple threads may not
be scheduled the same way on a subsequent run.

Y ou can replay program execution to any point by double clicking on that line or by cursoring
toit and pressing ENTER. Select any line and press the right mouse button to see the
following pop-up menu items:

Goto Replay the program until it returns to the selected level in the replay history.

Source Position the source window at the selected line.

Assembly Show the assembly code for the selected line.

6.4 The Calls Window

=| The WATCOM Debugger ME
File Bun Break Code Data Undo Search Window Action Help
=| Calls ME

'W1O0pen: wnd = WndCreateWithStruct{ &info); L+

WndCreateWithStruct: gui = GUICreateWindow(&init);
GUICreateVindow: call far GUIXCreateWindow
SYSERRORBOX: neqg ax

0x0487:0x0802: pop si

ISUSERIDLE: call dword ptr ss:+10[bx]

GUIWindowProc: call dword ptr es:+49[si]

WndMainEventProc: SpawnP{ DoMainEventProc. &spawnp);
SpawnP: func{ parm);

guimain{@DoMainEventProc: ret = WndEvent{ wnd. event. parm);

WndEwvent: return{ wnd->info->event{ wnd. event, parn

W1 EventProc: wWndFirstCurrent{ wnd):

wWndFirstCurrent: return{ WndMNextCurrent{ wnd. TRUE)):

WndMNextCurrent: if{ WndGetline{ wnd. row. piece, &line }) [

extern bool WlGetLine(a_window “wn dpy

«_| [+

Figure 14. The Calls Window

Choose Calls from the Code menu menu to display the Callswindow. Thiswindow displays
the program’ s call stack. Each line contains the name of the function that was executing, and

66 The Calls Window

Controlling Program Execution

the source or assembly code at the call site. You can use Unwind and Rewind to obtain this
information, but the calls windows will show you the entire call stack.

Y ou can Unwind to any point in the call stack by double-clicking on aline, or by cursoring to
it and pressing ENTER. Select aline and press the right mouse button to access the following
pop-up menu items:

Unwind Unwind the stack to the level of the selected code. Thisis equivalent to using
Unwind from the Undo menu or Rewind from the Undo menu.

Break Set a breakpoint at the return from the selected call.

Goto Execute until the program returns from the selected call.

6.5 The Thread Window

= The WATCOM Debugger - |~
File Bun DBreak Code Data Undo Search Window Action Help
[Thread-ID State

00064 runnable

00152 frozen

00154 frozen

00155 runnable

00156 runnable

00157 frozen

00158 runnable

00160 runnable

00161 cumemt
00163 runnable

00166 runnable

[«] 1

Figure 15. The Thread Window

Choose Thread from the Code menu to display Thread window. Thiswindow displays the
system ID of each thread, the state of the thread, and under some operating systems, system
specific information about the thread including its name and scheduling priority. The state of
each thread can be;

The Thread Window 67

Controlling Program Execution

current Thisisthe thread that was running when the debugger was entered. It isthe
thread that hit a break point or error. When you trace through the application,
only the current thread is allowed to run.

runnable Thisthread will be allowed to run whenever you let your program run, but will
not run when you trace the program.

frozen This thread will not be allowed to run when you resume your program.

dead Under some operating systems, threads that have been terminated still show up
inthelist of threads. A dead thread will never execute again.

Y ou can make any thread current by double clicking on it or cursoring to it and pressing
ENTER. All other debugger windows update accordingly. Press the right mouse button to
access the following pop-up menu items:

Switchto Make the selected thread current.

Freeze Change the state of the selected thread to be frozen. Y ou cannot freeze the
current thread.

Thaw Change the state of the selected thread to be runnable.. The current thread is
always runnable.

68 The Thread Window

Examining and Modifying the
Program State

Examining and Modifying the Program State

70

[Examining and Modifying the Program
State

The following topics are discussed:
* "Variable and Watch Windows'

* "The Memory and Stack Windows" on page 77

7.1 Variable and Watch Windows

2 init { struct } L+
= wnd 0x2837:0x0032 =
qui 0x6C34:0x8A28
buff "Sample Application”
size 118
S infol
= ->info Ox1877:0x4198
->text "Sample Application”
->class 2hh
->extra NULL
-»style GUI_MAXIMIZE+GUI_RESIZEABLE
-»scroll GUI_SCROLL_BOTH
& ->colour
-*ore GUI_WHITE
-*back GUI_BLUE =
H{«] 1 +

Figure 16. The Watch and Variable Window

Windows that display variables comein severa different varieties. They are:

Variable and Watch Windows 71

Examining and Modifying the Program State

 Locals

* File Variables
» Watches

* Variable

They are collectively called variable windows. Y ou use the same interactionsin all variable
windows to display, modify and browse your variables and data structures. The only
difference between these windows are the variables that they display. The valuesin each
window are updated as you trace through your program. The windows display the following
information:

Locals Contains the list of variables which are local to the current routine. Choose
L ocals from the Data menu to open this window.

File Variables Contains alist of all variables which are defined at file scope in the current
module. Thisincludes external and static symbols. Choose File Variables from
the Data menu to open this window.

Watches The Watches windows allows you to add and del ete variables and expressions.
In other windows you can choose Watch from the pop-up menu. Thiswill open
the watches window add the text which is selected in another window to the
watches window. Y ou can use New from the pop-up menu to add any
expression to the Watches window. Once entered, you can choose Edit from the
pop-up menu to edit the expressions or typecast the variables.

Variable Thisis another instance of a Watches window. A variable window is created
when you select avariable or expression in awindow and use I nspect from the
pop-up menu.

Each line of avariable window has three elements. On the left isabutton. The button
changes depending on the type of the variable or expression. it changes based on the type of
theitem:

structs (classes) (unions) Structures may be opened and closed by clicking on the button at
the left. When you open a structure or class, one line is added to the window for
each field of the structure. These new lines areindented. If you click on the
button again, the structure is closed and the window isreturned to its origina
State.

arrays Like structs, arrays may be opened and closed. When you open an array, one
line is added to the window for each element of the array. The debugger will
display at most 1000 elements of an array. If it contains more you can use
Type/Array... to open different ranges. Multi dimensional arrays are treated like

72 Variable and Watch Windows

Examining and Modifying the Program State

pointers

an array of arrays. When you open the first dimension, the lines that are added
will also be arrays which you can open.

When the variable is a pointer, you can click on the button and the debugger will
follow the pointer and change the line to represent the item which is the result of
the pointer reference. For example, if you have a pointer to an integer and click
on the button, the integer value will be displayed. The button then changesto
indicate so that you can undo the operation by clicking on it again.

In the case of pointers to pointers, clicking on the button will follow the pointers
one level each time you click on the button until a non-pointer value is reached.
Clicking on the button at this point will undo take you back to the original state.
When the pointer pointsto a struct, the structure will automatically be opened
when you click on the button. If apointer isreally an array, you can use
Type/Array... from the pop-up menu to open it as an array.

Next comes the name of the variable, field or array element being displayed. Finaly, the
valueisdisplayed. If theitem being displayed is not ascalar item, the value displayed is an
indication that it is a complex datatype. If the value changes when you run your program, it
will be highlighted. If avariable goes out of scope, or a pointer value becomesinvalid, the
value will be displayed as question marks.

Y ou can modify avariable’ s value by double clicking on the value field, or by cursoring to it
and pressing enter. Double clicking or pressing enter on the name field is equivalent to
clicking on the button. Press the right mouse button to access the following pop-up menu

items;
Modify...

Break

Watch

Modify the value of the selected item.

Set a breakpoint so that execution stops when the selected item’ s value changes.
Thisisthe same as setting a breakpoint on the object. See "Breakpoints' on

page 85.

Open anew Variable window containing the selected item. If theitemisa
compound object (array, class, or structure), it will be opened automatically.

Add the selected item to the Watch window.

Show/Raw Memory

Display raw memory at the address of thisvariable. Thisletsyou examine the
actual binary representation of avariable.

Variable and Watch Windows 73

Examining and Modifying the Program State

Show/Pointer Memory

Display the memory that the item pointsto. Thisisuseful when you have a
pointer to ablock of memory that does not have a type associated with it.

Show/Pointer Code

Show/Type

New

Display the code that the variable pointsto. If theitem being displayed isa
pointer to function, you can use this menu item to see the definition of that
function.

Display the type of the variable in an information message box. Select "OK" to
dismiss the information box and resume debugging.

Open adialog box in which you can edit an expression in the Watch window.
Thisisuseful for typecasting variables or evaluating expressions. See "Watcom
Debugger Expression Handling" on page 141.

Add anew variable or expression to the window. Y ou will be prompted for the
expression to add.

Delete the selected item from the window.

FieldOnTop Display the value of this member at the top of the structure/class. Y ou can

selectively add or remove items from the list that is displayed "on top". For
example, say you havea st ruct Poi nt displayed as.

[-] point
X 10
y 30

other "asdf"

If you toggle FieldOnTop for both x and y then poi nt would be displayed like
this:
[-] point { 10, 30 }
X 10

y 30
other "asdf"

Furthermore, if you closed the struct (or pointer to struct) then you would see:

[+] point { 10, 30 }

74 Variable and Watch Windows

Examining and Modifying the Program State

This carries to structs containing structs (and so on) as shown in the following
struct containing two Poi nt structures.

[-] rect { { 10, 10}, { 30, 30} }
top_left { 10, 10 }
bot _right { 30, 30 }

If you closeit, then you will see:
[+] rect { { 10, 10}, { 30, 30} }

Class/Show Functions
Display function members of this object. If thisoptionis not selected, no
functions are displayed. This option works in conjunction with other Class
selections to display "Inherited”, "Generated", "Private" and "Protected”
functions.

Class/Show I nherited
Display inherited members of thisobject. To seeinherited functions, you must
also select Class/Show Functions.

Class/Show Generated
Display compiled-generated members of this object. To see generated functions,
you must also select Class/Show Functions.

Class/Show Private
Display private members of this object. To see private functions, you must also
select Class/Show Functions.

Class/Show Protected
Display protected members of this object. To see protected functions, you must
also select Class/Show Functions.

Class/Show Static
Display static members of this object.

Type/Hex Changethe value to be displayed in hexadecimal.

Type/Decimal
Change the value to be displayed in decimal.

Type/Character
Change the value to be displayed as a single character constant. This useful

Variable and Watch Windows 75

Examining and Modifying the Program State

when you have a one byte variable that really contains acharacter. The
debugger will often display it as an integer by default.

Type/String The debugger automatically detects pointers to strings in the variable windows
and displays the string rather than the raw pointer value. In the string is not null
terminated, contains non-printable characters, or is not typed as a pointer to
"char’, this mechanism will not work. Type/String overrides the automatic
string detecting and displays the pointer as a string regardless of its type.

Type/Pointer
Thiswill undo the effects of Type/String or Type/Array. It will also let you see
the raw pointer value when the debugger has automatically displayed a pointer
to char asastring.

TypelArray...
Use this menu item to display a pointer asif it were an array, or to display
ranges of an array’s elements. Y ou will be prompted for the first and last
element to display.

Options/Whole Expression
Select this option to show the whole expression used to access fields and array
elementsinstead of just the element number or field name itself.

Options/Expand 'this

Do not display members of the 'this’ pointer asif they were local variables
declared within the member function.

76 The Memory and Stack Windows

Examining and Modifying the Program State

7.2 The Memory and Stack Windows

=| The WATCOM Debugger [~]-
File Bun Break Code Data Undo Search Window Action Help
=| Memory [0x18A7:0xB5E3) ME
Bx18A7:8xB5E3 Literal Empty L+
BxB5E3: [E 28 88 43 6F 6C 6F 75 72 68 42 6C 61 . .Colour.Bla

BzB5FB: 63 6B 808 42 6C 75 65 808 47 72 65 65 G6E ck.Blue.Green
BxBSFD: 688 43 79 61 6E 68 52 65 64 80 4D 61 67 .Cyan.Red.HMag
BzB6BA: 65 6E 74 61 60 42 72 6F 77 6E 88 57 68 enta.Brouwn.Wh
BxB617: 69 74 65 00 47 72 65 79 00 42 F2 69 67 ite.Grey.Brig
BxB624: 68 74 20 42 6C 75 65 00 42 72 69 67 68 ht Blue.Brigh
BxB631: 74 20 47 72 65 65 G6E 0@ 42 72 69 67 68 t Green.Brigh
BxB6G3IE: 74 20 43 79 61 6E B8 42 72 69 67 68 74 t Cyan.Bright [
BzB64B: 28 52 65 64 00 42 72 69 67 68 74 28 4D Red.Bright H [T
BxB658: 61 67 65 6E 74 61 88 42 72 69 67 68 74 agenta.Bright
BzB665: 28 59 65 6C 6C 6F 77 80 42 72 69 67 68 Yellow.Brigh
BxB672: 74 20 57 68 69 74 65 68 41 7O 7O 6C 49 t UWhite.Appll
BzB67F: 63 6F GE 88 42 ¥5 73 79 280 2E ZE 2E 88 con.Busy
BzBG6BC: 52 65 67 75 6C 61 72 28 45 78 78 72 65 Reqular Expre
8xB699: 73 73 69 6F 6E 20 43 68 61 72 61 63 74 ssion Charact
H@xB6AG: 65 72 73 80 45 6E 74 65 72 28 53 65 61 ers.Enter Sea —f

Figure 17. The Memory Window

Use the Memory window or the Stack window to examine memory in raw form. To open a
Memory window, choose Memory At from the Data menu. The Enter Memory Address
dialog appears. Enter the memory address and press Return to see the Memory window. Y ou
can also use one of the Show/Pointer Memory or Show/Raw Memory itemsin avariable
window to display the memory associated with avariable.

The Stack Window always shows the memory at the stack pointer. It is moved as your
program executes to track the top of the stack. The stack pointer location will be at the top of
the window. Thelocation of the BP or EBP register will also be indicated. Choose Stack
from the Data menu to open the Stack window.

Y ou can modify memory by double-clicking on avaluein the Memory or Stack window, or
by cursoring to it and pressing enter. Y ou will be prompted for a new value.

Memory windows allow you to follow data structures in the absence of debugging

information. The Follow menu items will reposition the memory window to the address that
isfound under the cursor. The Repeat and Previousitemswill let you repeat afollow action.

The Memory and Stack Windows 77

Examining and Modifying the Program State

Thismakesit simpleto follow linked lists. Press the right mouse button to access the
following pop-up menu items:

Modify Modify the value at the selected address. Y ou will be prompted for a new value.
Y ou should enter the value in the same radix as the window is currently
displaying. You are not limited to typing constants values. Y ou can enter an
arbitrary expression to be used for the new value.

Break on Write
Set a breakpoint to stop execution when the selected value changes. See
"Breakpoints" on page 85.

Near Follow
Displays the memory that the selected memory pointsto, treating it as a near
pointer. The new offset to be displayed will be xxxx where xxxx is the word
under the cursor. DGROUP will be used as the segment if it can be located.
The program’sinitial stack segment will be used otherwise. When you are
debugging a 16-hit or 32-bit application, the appropriate word size is used.

Far Follow Displaysthe memory that the selected memory points to, treating it as a far
pointer. The new address to be displayed will be the the segment and offset
found at the cursor location. Note that pointers are stored in memory with the
offset value first and the segment value second.

Segment Follow
Display the segment that the selected memory points to, treating it as a segment
selector. The new address to be displayed will be xxxx:0 where xxxx is the two
byte word under the cursor.

Cursor Follow
Make the selected position the new starting address in the window. This means
that the first byte in the memory window will become the byte that the cursor
was pointing to. Thisisuseful for navigating through an array when no
debugging information is available.

Repeat Repeat the previous Follow operation. The new address that will be used is at
the same offset relative to the beginning of the window as it was in the original
Follow operation. Repeating a pointer or segment follow isalinked list
traversal. Repeating a Cursor Follow operation advances to the next element in
an array.

78 The Memory and Stack Windows

Examining and Modifying the Program State

Previous

Home

Assembly

Type/Byte

Type/Word

Back out of a Follow or Repeat operation. Thiswill display the memory
window you were previously viewing. Essentially, this undoes a Follow
operation. You can back all the way out to the first memory location you were
examining.

Undo all Follow and Repeat operations. Thiswill take you back to the very first
location window you were examining. It isequivalent to using Previous
repeatedly.

Scroll the window backward through memory by the size of the displayed
memory items.

Scroll the window forward through memory by the size of the displayed memory
items.

Position the window at a new address. Y ou will be prompted to typein anew
address. Y ou can type an arbitrary expression. See "Watcom Debugger
Expression Handling" on page 141. If you type the name of avariable, the
address of that variable is used. If the expression you type does not contain a
segment value DGROUP will be used as the segment if it can be located. The
program’sinitial stack segment will be used otherwise.

Position the assembly window to the address of the memory under the cursor.
Thisisuseful if you have incorrectly displayed a pointer as data and wish to
look at the code instead.

Display as hexadecimal bytes.

Display as hexadecimal 16-bit words.

Type/Dword Display as hexadecimal 32-bit words.

Type/Qword Display as hexadecimal 64-bit words.

Type/Char

Display as signed 8-hit integers.

Type/Short Display as signed 16-bit integers.

Type/Long

Display as signed 32-bit integers.

The Memory and Stack Windows 79

Examining and Modifying the Program State

Type/__int64
Display as signed 64-bit integers.

Type/Unsigned Char
Display as unsigned 8-bit integers.

Type/Unsigned Short
Display as unsigned 16-bit integers.

Type/Unsigned Long
Display as unsigned 32-bit integers.

Type/Unsigned __int64
Display as unsigned 64-bit integers.

Type/0:16 Pointer
Display as 16-bit near pointers (16-bit offset).

Type/16: 16 Pointer
Display as 32-hit far pointers (16-bit segment, 16-hit offset).

Type/0:32 Pointer
Display as 32-bit near pointers (32-bit offset).

Type/16:32 Pointer
Display as 48-hit far pointers (16-bit segment, 32-bit offset).

Type/Float Display as 32-hit floating-point values.

Type/Double
Display as 64-bit floating-point values.

Type/Extended Float
Display as 80-bit floating-point values.

7.2.1 Following Linked Lists

Use the memory window to display the memory address of the first node of your linked list.
Moveto the "next" field of your structure and use the Near (or Far) Follow command. The
next node of your linked list will be displayed. Now by using the Repeat command you can
traverse the linked list.

80 The Memory and Stack Windows

Examining and Modifying the Program State

7.2.2 Traversing Arrays

Display the memory address of your array. Select the first byte of the second element of your
array then use the Cursor Follow command to move the second element of your array to the
beginning of the memory window. By using the Repeat command you can traverse your

array.

The Memory and Stack Windows 81

Examining and Modifying the Program State

82 The Memory and Stack Windows

Breakpoints

Breakpoints

84

8 Breakpoints

The Watcom Debugger uses the single term breakpoint to refer to the group of functions that
other debuggers often call breakpoints, watchpoints, and tracepoints.

A breakpoint istraditionally defined as a place in your program where you want execution to
stop so that you can examine program variables and data structures. A watchpoint causes
your program to be executed one instruction or source line at atime, watching for the value of
an expression to become true. Do not confuse a watchpoint with the watch window. A
tracepoint causes your program to be executed one instruction or source line at atime,
watching for the value of certain program variables or memory-referencing expressions to
change.

In the Watcom Debugger:

* Break-on-execute refers to the traditional breakpoint

* Break-on-write refers to the traditional tracepoint

* A traditional watchpoint is a break-on-execute or break-on-write that is coupled with a
condition

The Watcom Debugger unifies these three concepts by defining three parts to a breakpoint:
« the location in the program where the breakpoint occurs
« the condition under which the breakpoint is triggered
« the action that takes place when the breakpoint triggers

Y ou can specify a countdown, which means that a condition must be true a designated number
of times before the breakpoint is triggered.

When a breakpoint is triggered, several things can happen:
* program execution is stopped (a breakpoint)
* an expression is executed (code splice)
* agroup of breakpointsis enabled or disabled
In this chapter, you will learn about the breakpoint including how to set simple breakpoints,

conditional breakpoints, and how to set breakpoints that watch for the exact moment when a
program variable, expression, or data object changes value.

Breakpoints 85

Breakpoints

8.1 How to Use Breakpoints during a Debugging
Session

The following topics are discussed:
* "Setting Simple Breakpoints'

* "Clearing, Disabling, and Enabling Breakpoints' on page 87

8.1.1 Setting Simple Breakpoints

When debugging, you will often want to set afew simple breakpoints to make your program
pause execution when it executes certain code. Y ou can set or clear a breakpoint at any
location in your program by placing the cursor on the source code line and selecting Toggle
from the Break menu or by clicking on the button to the Ieft of the sourceline. Y ou can set
breakpoints in the assembly window in a similar fashion. Setting a break-on-write breakpoint
isequally smple. Select the variable with the right mouse button and choose Break from the
pop-up menu.

Break points have three states. They are:

* enabled
» disabled
» cleared (non-existent)

The button for an enabled break point isastop sign or [!]. The button for a disabled break
pointisagrey stop signor[.]. A green diamond or [] appears when no breakpoint exists at
the given line. The same buttons also appear in the Assembly window and the Break window
to indicate the status of a break point.

Note: Some linesin your program do not contain any machine code to execute and
therefore, you cannot set a breakpoint on them. The compiler does not generate
machine code for comments and some C constructs. All lines of code in your
program that can have a breakpoint on them have a button to the left of the
source line. You can click on them to change their current status.

86 How to Use Breakpoints during a Debugging Session

Breakpoints

8.1.2 Clearing, Disabling, and Enabling Breakpoints

Choosing Toggle from the Break menu (F9) toggles between the three different breakpoint
states:

* enabled
» disabled
» cleared (non-existent)

8.2 The Break Menu

Y ou can use the Break menu to control your breakpoints. Operations including creating new
breakpoints, changing a breakpoint’s status, and viewing alist of al break points.

Toggle Change the status of the breakpoint at the current line in the source or assembly
window. The status alternates between enabled, disabled and cleared. The
button on the source or assembly line will be updated to reflect the status of the
breakpoint.

Note: Disabled and cleared breakpoints are not the same. If you disable a
breakpoint, you can re-enable it and retain the information about
the breakpoint (i.e., conditions, countdown, and actions). When
you clear a breakpoint, you lose al information about the
breakpoint. |f you disable a breakpoint, and press F9 twiceto
enable, you will lose the information about the breakpoint because
you cleared it before you re-enabled it. To enable a disabled
breakpoint without losing the breakpoint information, use the
Breakpoint Option dialog or the Breakpoint window.

At Cursor Set abreakpoint at the current line in the source or assembly window. If the
current line does not contain any executable code, the breakpoint is set on the
closest preceding line of code that does contain executable code. When you
choose At Cursor, the Breakpoint dialog appears.

New This allows you to create any type of breakpoint using adialog. You must
specify the address in the dial og.

On Image Load...
Cause program execution to stop when an executable image (DLL) is
dynamically loaded. The menu item is only available when debugging an
Win32 or OS/2 executable. A diaogue will appear allowing you to add and
delete image names from thelist. Y ou only need to type a substring of the

The Break Menu 87

Breakpoints

actual image name. You can identify thefile"CAPATHAIMAGE.DLL" with any
substring, for example "IMAGE", "IMAGE.DLL" or "ATH\IMAGE.DLL".
Caseisignored in the image names.

On Debug Message
When checked, cause program execution to stop whenever Windows 3.1,
Windows NT, or Windows 95 prints adebug string. A debug string is printed
whenever the application or debug Kernel calls the OutputDebugString
function. This option istoggled each timeit is selected from the Break menu.

View All Open the breakpoint window. Thiswindow will show alist of all breakpoints.
Y ou can use the window to create, delete and modify breakpoints.

Clear All Clear all breakpoints.

Disable All Disable al breakpoints, but do not delete them.

Enable All Enable al breakpoints that are disabled.

Save Save al breakpoint information to afile. Thisisuseful when you are creating
complicated breakpoints. Y ou can save and restore them in alater debugging

Session.

Restore Restore a set of breakpoints that were saved by using Save from the Break
menul.

88 The Break Window

Breakpoints

8.3 The Break Window

File Bun Break Code Data Undo Search Window Action Help
WndCreateWithStruct: gui = GUICreateWindow(&init); K

@ WndCreateWithStruct: init.colours = info->colour; L

J qui 0x6C348A28

@ WndDestroy: extern void WndDestroy{ a_windg

@ guimain{@DoMainEventProc: static void DoMainEventProc{ spaw

@ VWhndFini: bool WndFini(}

@ WndGetDClick: int WndGetDClick()

@ wndHourGlass: void *¥WndHourGlass(void *to)

@ whndinit: bool Wndlnit{ char *str)

@ WndinitNumPR.ows: void WndInitNumBows(a_window ™y

@ WhndinstallClickHoolk: void ¥WndinstallClickHook{ YWNDCLI

@ guimain{@wWndKeyEnter: static void WndKeyEnter{ a_window

@ wWndMainEventProc: bool WndMainEventProc(gui_windg

@ guimain@WndMoveResize: static void WndMoveResize(a_winy

@ wWhndSetDClick: void WndSetDClick(int new) ‘

«[1 +

Figure 18. The Break Window

The Break window displays each breakpoint and its status. It appears when you select the
View All from the Break menu A breakpoint button appears at the left of each line. You can
click on this button to enable and disable a breakpoint. Unlike the source and assembly
windows, the button will not clear the breakpoint. Next appears the address of the breakpoint.
Finally, for break-on-execute breakpoints, the source or assembly code at the break point
location is displayed. For break-on-write breakpoints, the current value of the location is
displayed in hex.

Y ou can modify any break point by double clicking on it, or by cursoring to it and pressing
enter. The Breakpoint Options dialog will appear to allow you to modify the break point.
Press the right mouse button to access the following pop-up menu items:

Modify

New

Change the definition of the selected breakpoint. The Breakpoint dialog will
appear.

Add anew breakpoint. An empty Breakpoint dialog will appear. Y ou must
specify the address of the new Breakpoint. Refer to the section entitled "The

The Break Window 89

Breakpoints

Breakpoint Dialog" for a description of the items in the which appear in the
dialog.

Delete Delete the selected breakpoint.
Enable Enable the selected breakpoint.
Disable Disable the selected breakpoint.

Source Display the source code associated with the break point. This operation only
makes sense for break-on-execute breakpoints.

Assembly Display the assembly code associated with the selected line. This operation only
makes sense for break-on-execute breakpoints.

8.4 The Breakpoint Dialog

Address Condition Break On
I |i==1 @ Execute
! 1 Byte
‘Countdown———— Total Hits ' 2 Bytes
| : C 18y

-Execute When Hit

I [Besume [¥ Enabled

Walue

extern void WndDestrop[a_window “wnd] {

I Ok I | Clear I | Symbol ... I | Cancel I

Figure 19. The Breakpoint Dialog

90 The Breakpoint Dialog

Breakpoints

The breakpoint dialog appears when you select At Cursor from the Break menu or New from
the Break menu and whenever you attempt to modify a break point. It alowsyou to define
the breakpoint and set al of its conditions. A description of the itemsin the dialog follows.

Address

Condition

This edit field displays the address tag associated with the selected breakpoint.

When you choose At Cursor thisfield already contains an address that describes
the line of code that the cursor ison. The format of the addresstag is

synbol +of f set where synbol isthe name of the nearest function and

of f set isdistance in bytes past that symbol where the break point is defined.
Itisnormally best NOT to edit thisfield. To change the line of source code,
leave the dialog, move the cursor to where you want the breakpoint, and use the
At Cursor command again.

When you choose New, thisfield is empty. You can type any valid address
expression in thisfield. It can be the name of afunction, global variable. Refer
to the section entitled "Watcom Debugger Expression Handling" on page 141 for
more information about address expressions. In the dialog, you can click the
Symbols... button as a shortcut. Y ou can type a partial symbol namelike f oo
and the Symbol button will show you alist of symbols that start with f 0o.

Y ou can then choose one of these symbols by clicking on it or hitting ENTER.
Note that the first time you use the Symbols... in adebugging session, it will
take awhile as the debugger sorts the symbol table for the program.

Note: Be careful when using local (stack) variables for a break-on-write
breakpoint. As soon as execution leaves the scope of the variable,
the memory will change at random since the variable does not
really exist any more and the memory will be used for other
variables. Also, if execution entersthat variabl€' s scope again, the
variable may not have the same memory address.

Use thisfield to enter a conditions that must be met before a breakpoint will
trigger. The condition can be an arbitrary debugger expression. Theseinclude
statements in the language you are debugging. A valid example for the C
languageisi ==

Break on Execute

Check thisfield to create a break-on-execute breakpoints. If you choose
Execute, be sure that the address field contains a code address (function name or
code line number) and not avariable address. Variable are never executed. If
the address field names a variable, the breakpoint will never trigger.

Break on 1 Byte/2 Bytes/4 Bytes...

Check one of these fields to create break-on-write breakpoints. If you choose

The Breakpoint Dialog 91

Breakpoints

Countdown

Total Hits

Reset

one of these options, be sure that the Address field contains a variable address
and not a code address. A code address will never be written to, so the
breakpoint will never trigger. The size of the memory location is defined by the
checkbox you use as follows:

1 Byte The breakpoint will trigger only when the first byte of the memory
address is written to.

2 Bytes The breakpoint will trigger when either of the first two bytes at the
memory address are written to.

4 Bytes The breakpoint will trigger if any of the first four bytes of the
memory address are written to.

etc. The breakpoint will trigger if any of thefirst "n" bytes of the
memory address are written to.

Use thisfield to enter the number of times an address must be hit before the
breakpoint triggers. Every time the breakpoint conditions are met, the
countdown decreases by one. The breakpoint will trigger only after the
countdown is at zero. Once the countdown reaches zero, the breakpoint will
trigger each time the conditions are met. If you have also set a condition, the
countdown will only decrease by one when the condition is true.

Thisfield displays the total number of times an address has been hit. This
includes the times the breakpoint does not trigger because a condition failed or
the countdown has not yet hit zero.

Click on this button to reset the Total Hitsfield to zero.

Execute when Hit

Resume

Enabled

Use thisfield to enter a debugger command. When the breakpoint is triggered,
the debugger will execute thiscommand. Y ou can use thisfield to execute
arbitrary C statements, change a variable or register, or even set other
breakpoints. For a more detailed description of commands that can be entered in
thisfield, refer to the section called "Debugger Commands* on page 175. If you
want to use thisfield to execute a statement in the language you are debugging,
you need to use a DO command in front of the statement. For example, you
couldenter DO i = 10 to havethevaue of 10 assigned to i each timethe
breakpoint triggered.

Check thisfield if you want the program to resume execution after the Execute
when Hit command has been completed. This capability can be used to patch
your code.

Thisfield displays the current status of the breakpoint. If it is checked, the
breakpoint is enabled. If itisunchecked, the breakpoint is disabled.

92 The Breakpoint Dialog

Breakpoints

Value For Break-on-Execute breakpoints this field displays the source line or the
assembly line at which the break point is defined. For Break-on-Write
breakpoints, this field displays the memory contents.

Clear Click on the clear button to clear the breakpoint and close the dialog.

The Breakpoint Dialog 93

Breakpoints

94 The Breakpoint Dialog

Assembly Level Debugging

Assembly Level Debugging

96

9 Assembly Level Debugging

This chapter addresses the following assembly language level debugging features:
* "The CPU Register Window"

* "The Assembly Window" on page 98

"The I/O Ports Window" on page 100

"The FPU Registers Window" on page 101

"The MM X Registers Window" on page 102

9.1 The CPU Register Window

» CPU registers (Pentium)
EAX: 00000000 EBX: 00000008 ECX 40301C07 EDX: 00000000
ESI: 40310000 EDI: 00000000 EBP: 3FF00000 ESP: 0055FCEC

EIP: 004017FA EFL: 00000246 C: 0 P: 1
A 0 £ 1 5: 0 I: 1
D: 0 0: 1] DS: 013F ES: D13F
F5: 2CBF GS: 0000 55:. DI3F CS: 0137

Figure 20. The CPU Register Window

Y ou can open the CPU Register window by choosing Register from the Data menu. The
register names and values are displayed in thiswindow. ASyou execute your program,
registers that have changed since the last trace or breakpoint will be highlighted.

Y ou can modify aregister value by double clicking on the value, or by cursoring to it and
pressing ENTER. Press the right mouse button to access the following pop-up menu items:

The CPU Register Window 97

Assembly Level Debugging

Modify Change the value of the selected register.

I nspect Open a Memory window displaying the memory contents of the address
specified by the register. |f a segment register is selected, memory at offset 0in
the segment will be displayed.

Hex Toggles the register window display format between hexadecimal and decimal.

Extended Displaysthe Extended 386 register set. This menu item sets optionson a
per-window basis, overriding the global settings. When you use the menu item
to change these settings, they will not be saved between debugging sessions. To
change an option permanently, see "The Window Options Dialog" on page 38.

9.2 The Assembly Window
File Bun Break Code Data Undo Search Window Action
¢ Jas2 mov word pir -25[bp].18A7 S5:8A05=18A7
& BART mov word ptr -27[bp].53E1 55:8A03=53E1
init.extra = wnd;
& BARC mov bx.-1A[bp] S5:8A10=0032
& hARF mov -23[bp].bx S5:BA07=0032
@ 5A62 mov ax.-18[bp] S5:BA12=2837
& hAES mov -21[bp]l.ax S5:BA09=2837
_Set{ wnd. W5W_ACTIVE); :I
< LAGS mov es.-18[bp] S5:BA12=2837
& hAGB les bx.dword ptr -1A[bp] S5:8A10=28370032
& LABE or byte ptr es:+30[bx].40 ES:006F=C0
gui = GUICreateWindow(&init);
ISPLA73 mov dx.ss
& hAZH lea ax.-46[bp]
1< bAZS mov bx, ax +

Figure 21. The Assembly Window

Y ou can open the Assembly window by choosing Assembly from the Code menu. Y ou can
Inspect an item in by double-clicking on it, or by cursoring to it and pressing ENTER. Press
the right mouse button to access the following pop-up menu items:

98 The Assembly Window

Assembly Level Debugging

I nspect

Break

When you selecting a memory address, register or operand and use Inspect, the
debugger opens a Memory Window displaying the selected memory address.

If acode addressis selected this command will set a break-on-execute
breakpoint at the selected code address. If avariable addressis selected, this
command will set a break-on-write breakpoint on the selected address. this does
not set a break at the current line. Use Toggle from the Break menu or At
Cursor from the Break menu to set a breakpoint at the current line.

Enter Function

Resume program execution until the selected function is executed.

Show/Source

Display the source code associated with the selected assembly line.

Show/Functions

Show the list of all functions defined in the current module.

Show/Address

Reposition the window at a new address. Y ou will be prompted for an
expression. Normally you would type a function name but you can type any
expression that resolves to a code address. For example, you might type the
name of avariable that contains a pointer to afunction. See "Watcom Debugger
Expression Handling" on page 141.

Show/Module...

Home

Hex

Show adifferent module. Y ou will be prompted for itsnamein adialog. Asa
shortcut, you can type the beginning of a module name and click the Module...
button. Thiswill display alist of all modules that start with the text you typed.

Reposition the window to the currently executing location. The cursor will
move to the next line of the program to be executed.

Toggle the Assembly window display between hexadecimal and decimal. This
menu item sets options on a per-window basis, overriding the global settings.
When you use the menu item to change these settings, they will not be saved
between debugging sessions. To change an option permanently, see "The
Window Options Dialog" on page 38.

The Assembly Window 99

Assembly Level Debugging

9.3 The I/0O Ports Window

-Eilﬂ Bun Break Code Data Undo Search Yindow Action Help

ol 0020 1A

ol 0021 (]1]

oh” 0022 (]1]

o’ 0040 4800
oh’ 0042 0040
E1e-40 060 24003600

Figure 22. The I/O Window

Use the I/O window to manipulate I/O ports. Thisisonly supported when the operating
system allows application software to use IN and OUT instructions. 1/0 ports can be added to
the window, and typed as a byte, word (2 bytes) or dword (4 bytes). Use New from the
pop-up menu to add a new port to the window. Once you have done this, four items will
appear on theline. First appears the read button which appears as an open book, or [r].
Second appears the write button. It isapencil or [w]. Third appears the port address, and
finally the value. When you first enter a port address the value appears as question marks.
The debugger does not automatically read or write the value since this can have side effects.
In order to read the displayed value from the port, click on the read button. To write the
displayed value back, click on the write button. Y ou can change the value by double clicking
onit, or by cursoring to it and pressing ENTER. Press the right mouse button to access the
following pop-up menu items:

100 The I/O Ports Window

Assembly Level Debugging

Modify Change the selected item. Y ou can change either the value field or the address
field. Thisdoes not write the value back to the port. Y ou must choose Write to
write to the port.

New Add anew line to the window. Y ou can have several 1/0 ports displayed at
once.

Delete Delete the selected line from the window.

Read Read the displayed value from the port.

Write Write the displayed value to the port.

Type Change the display type of the value. The size of this type determines how

much is read from or written to the 1/O port.

9.4 The FPU Registers Window

FPU registers (Pentium)

ST(0): +6.853891945200942000E-0002 TAG(D): Valid ie: 0 st 2 im: 1 status: 1020

ST(1): -2.000000000000000000E+0000 TAG(1): Valid de: 0 c0: 0 dm: 1 control: 127F

ST(2): +0.000000000000000000E+000D TAG(2): Zero ze: 0 c1: 0 zm: 1 pc: double

ST(3): +1.700000000000000000E+0001 TAG(3): Yalid oe: 0 c2: 0 om: 1 rc: nearest

ST(4): +1.699639268844990000E +0001 TAG{4): Valid we: 0 c3: 0 um: 1 ic: affine

ST(b): +1.500000000000000000E+0001 TAG(E): Valid pe:1 pe: 1 iptr: 0x0137:0x004017F4
ST(B): 22729227 2927222022220292222227 TAG(6): Empty sf: 0 iem: 0 optr: 0x013F:0x0040E018
ST(7): 2229222292292229222292222227 TAG(7): Empty es: 0

Figure 23. The FPU Registers Window

Choose FPU Registers from the Data menu to open the FPU window. Thiswindow displays
the current value and status of all the FPU registers. If you are debugging a program that uses
Intel 8087 emulation, thiswindow display the contents of the emulator’s dataarea. Y ou can
change a value by double-clicking on, it or by cursoring to it and pressing ENTER. Pressthe
right mouse button to access the following pop-up menu items:

Modify Change the value of the selected register, or bit. Y ou will be prompted for anew
value, unless you are modifying abit. A bit will toggle between 0 and 1.

Hex Toggle the FPU window display between hexadecimal and floating point
display. This menu item sets options on a per-window basis, overriding the
global settings. When you use the menu item to change these settings, they will
not be saved between debugging sessions. To change an option permanently,
see "The Window Options Dialog" on page 38.

The FPU Registers Window 101

Assembly Level Debugging

9.5 The MMX Registers Window

+ MMX Registers [_ (O] x|

MMO: 00 00 00 00 OO0 OO OO0 OO0
MM1: 76 54 32 10 FE DC BA 986
MMZ: 00 00 00 OO0 00 OO OO0 OO0
MM3: 00 00 00 OO0 OO0 OO OO0 OO0
MM4: 00 00 00 OO0 00 OO OO0 OO0
MM5: A BA AD E3 E3 5A 18 00
MMG: 80 00 00 00 00 OO OO0 OO0
MM7:80 00 00 OO0 00 OO OO0 OO

Figure 24. The MMX Registers Window

Choose MM X Registers from the Data menu to open the MM X window. Thiswindow
displays the current values and status of all the MM X registers. Y ou can change avalue by
double-clicking on, it or by cursoring to it and pressing ENTER. Press the right mouse button
to access the following pop-up menu items:

Modify Change the value of the selected register component. Y ou will be prompted for
anew value. The same action can be performed by pressing ENTER or
double-clicking as described above.

| nspect Thisitem has no function in the MM X register window.

Hex Toggle the MMX register window display between hexadecimal and floating
point display. This menu item sets options on a per-window basis, overriding
the global settings. When you use the menu item to change these settings, they
will not be saved between debugging sessions. To change an option
permanently, see "The Window Options Dialog" on page 38.

Signed Toggle the display of the contents of the MM X registers as sighed or unsigned
guantities. When "signed" is enabled, each byte, word or double-word is
displayed as a signed quantity. When "signed" is disabled, each byte, word or
double-word is displayed as an unsigned quantity.

Byte Display the contents of the MM X registers as a series of 8 bytes.

Word Display the contents of the MM X registers as a series of 4 words.

Dword Display the contents of the MM X registers as a series of 2 double-words.

102 The MMX Registers Window

Remote Debugging

Remote Debugging

104

10 Remote Debugging

10.1 Overview

Remote debugging allows you to run the debugger on one side of a communication link and
the application being debugged on the other. Remote debugging is required when there is not
enough memory to run both the debugger and the application on the same machine.

The DOS debugger runsin protected mode (above the 1M mark), with a small memory
footprint in the first 640k. Newer operating systems such as OS/2 and Windows NT/95 have
eliminated the 640k barrier, so there s little need for remote debugging. Remote debugging is
also required to debug Novell NetWare applications.

There are many different communication links supported. Some communicate between two
machines. In this case an external communication medium is used. Some links communicate
between two operating systems shells on the same machine. In either case, the concepts are
the same.

While remote debugging, you may want to reference afile that is found on one machine or the
other. See the section entitled " Specifying Files on Remote and Local Machines' on page 119
for details about remote and local file names.

The debugger is broken down into 4 parts.

The Debugger Thisisthe portion of the debugger that contains the user interface. Itisthe
largest part of the debugger. Itsnameis either WD.EXE, WDW.EXE or
WDC.EXE

The Debug Kernel The debugger interprets your requests and sends low level requests to the
debug kernel. I1tisasmall executable that is dynamically loaded by the
debugger or aremote debug server and used to control your application. It can
be caled STD.TRP, STD.DLL, RSI.TRP, ADS.TRP or PLSTRP

Remote Trap Files— These are versions of the debug kernel file that take requests and send
them across a communications link to a remote debug server. Y ou choose atrap
file using the debugger’s "trap” option. See"Common Switches' on page 16.
Trap files have a 3 letter file name that represents the name of the
communications layer being used. Thefile extensionisTRP or DLL.

Overview 105

Remote Debugging

Remote Debug Servers— These executable files receive requests from a communications link
and pass them to a debug kernel. Remote debug server names all start with
?7?SERV. Thefirst 3 letters represent the communication layer being used and
correspond to the trap file that is used on the other side of the link.

In the following examples,

A>cnmdl
B>cnd2

indicatesthat cnd1 isto be run on one machine and cnd?2 isto be run on the other.

A normal non-remote debugging session just uses the user interface and the debug kernel. All
components run on the same machine. This simple debugging session would be started with

the command:

A>wd app

R T + T +
WD. EXE		STD. TRP		APP. EXE
11				
VA				
[
SR + oo m e m oo + Fomm e - +

Debugging a Tenberry Software DOS/4GW (32-hit extended DOS) application is the same
except you must use a different trap file to control the application.

A>wd /trap=rsi app

A remote debugging session adds a remote debug server and aremotetrap file aswell. For
example, using the parallel port to debug between two machines would be accomplished using
the following components:

106 Overview

Remote Debugging

A>par serv
B>wd /tr=par app

R T +
| WD.EXE | | PARTRP |
| - |
| VA |
| || |
SR + oo m e m oo +

+-- parallel --+

| cabl e
+I -------- T + T +
PARSERV		STD.TRP		APP. EXE
. EXE /1				
VA				
SR + oo m e m oo + Fomm e - +

In order to start the above remote debugging session, you must follow these steps.

1. Connect the two machines with aparallel cable. See"Wiring For Remote
Debugging” on page 209.

2. Start the remote debug server (PARSERV) on one machine.

3. Start the debugger with the option "/trap=PAR" on the other machine. This causes
the debugger to load the remote trap file (PAR). Thiswill communicate across the
remote link to PARSERV.EXE, which will in turn communicate with the debug
kernel (STD) in order to debug the application.

Therest of the debugger command line isidentical to the command you would type if you
were debugging the application locally.

Y ou must start the remote debug server first. 1f you do not, the remote trap file will not be
able to establish acommunication link and the debugger will refuse to start.

It isimportant to realize that the application to be debugged must reside on the debug server
machine. It must be possible for the debug server to locate the application to be debugged. 1t
can be in the current working directory of the debugger server machine, or inthe PATH, or a
path to locate the application on the debug server machine can be specified on the debugger
command line. Alternatively, you can ask the debugger to download the application to the
debug server machine if the application resides on the debugger machine.

A>par serv
B>wd /down /tr=par app

Overview 107

Remote Debugging

See the description of the "download" option in the section entitled "Common Switches' on
page 16.

If you are remote debugging a 32-bit application, you must use the correct trap file on the
remote debug server side of thelink. Thetrap file specification must come first before any
other arguments on the command line.

A>serserv /[tr=rsi
B>wd /tr=ser app

T —— B S S +
| WD.EXE | | SER TRP |
I Il I
I VA I
I |1 I
R S I ISR +
I

+--- serial ---+

| cabl e
+--! -------- B S S + S +
| SERSERV | | RSI.TRP | | APP.EXE |
| . EXE /1 | | [
I VA I I I
I |1 I I I
R S I ISR + . +

Following is an example of an internal remote link. This example shows you how to use the
0S/2 version of the debugger to debug a DOS application.

|
+-- 0S/2 NP APl --+

The communication medium employed in this caseis OS2 Named Pipes.

108 Overview

Remote Debugging

The debugger provides the following remote link capabilities:

NOV

NET

PAR

SER

WIN

NMP

VDM

TCP

Thislink uses Novell’s SPX layer for communication. Supported under DOS,
0S/2, Windows 3.x, Windows NT and NetWare.

Thislink uses NetBIOS to communicate. If your network software supports
NetBIOS, you can use thislink. Supported under DOS, OS/2, Windows 3.x, and
NetWare.

Thislink supports communication using the parallel or printer port. Several
different cable configurations are supported. See "Wiring For Remote
Debugging” on page 209. Supported under DOS, OS/2, Windows 3.x, NetWare
and QNX.

Thislink uses aserial port to communicate. Rates of up to 115K BAUD are
supported. See "Wiring For Remote Debugging" on page 209. Supported under
DOS, 0S/2 and QNX.

Thislink will communicate between two Windows DOS boxes. Supported
under Windows 3.x and Windows 95 (for DOS applications only).

Thislink will use Named Pipes to communicate internally between OS/2
sessions. 0S/2, DOS and Win-OS/2 sessions are supported. 1 your network
supports Named Pipes, and you have at least one OS/2 machine on the network,
you can communicate between OS/2, DOS and Windows 3.x machines on the
network. Supported under OS/2 (DOS, OS/2 and Windows 3.x applications).

Thislink isasubset of the NMP link. It is supported under OS/2 and Windows
NT. The application being debugged must be a DOS or seamless Win-OS/2
application. Supported under OS/2 and Windows NT (DOS, OS/2 and Windows
3.x applications).

Thislink will use TCP/IP to communicate internally or over a network between
sessions. Supported under OS/2, Windows NT, Windows 95 and QNX.

Communication parameters may be passed to the remote trap file and the remote server. They
are passed to the remote trap file by following the name of the trap file with a semi-colon and
the parameter. For example:

A>serserv 2.4800

passes the parameter 2.4800 to the remote debug server. To pass the same parameter to the
remote trap file, use:

Overview 109

Remote Debugging

B>wd /tr=ser;2.4800 app

These link parameters are specific to each remote link and are described in the following
section.

Each of the debug servers can accept an optional "Once" parameter. The "Once" parameter is
used by the Watcom Integrated Development Environment. Usually, a server stays running

until terminated by the user. If the "Once" option is specified, the remote server will
terminate itself as soon as the debugger disconnects from it.

10.2 Link Descriptions

The following communication links are described:

« "NOV (Novell SPX)"

"NET (NetBIOS)" on page 111

"PAR (Paralldl)" on page 111

"SER (Serid)" on page 112

"WIN (Windows 3.x/95 Virtual DOS Machine)" on page 114

"NMP (Named Pipes)" on page 115

"VDM (Virtual DOS Machine)" on page 116

"TCP/IP (Internet Packets)" on page 117

10.2.1 NOV (Novell SPX)

Thislink communicates over aNovell Network. 1n order to use thislink, you must have a
NetWare requester installed on both machines. Be sure that it is configured to include the
SPX option. Consult your NetWare documentation for details.

The parameter to thislink is an arbitrary name to be used for the connection. Thisalows
multiple network users users to remote debug simultaneously. The default name is NovLink.
If the remote server will not start, try specifying a different name for the link. The following
exampl e shows how to use the default link parameters:

110 Link Descriptions

Remote Debugging

A>novserv
B>wd /tr=nov app

The following example shows how to name "john" as alink parameter:

A>novserv john
B>wd /tr=nov;john app

10.2.2 NET (NetBIOS)

Thislink communicates over NetBIOS. In order to use thislink, you must have NetBIOS
installed on both machines. Consult your network documentation for details.

The parameter to thislink is an arbitrary name to be used for the connection. This allows
multiple network users users to remote debug simultaneously. The default name is NetLink.
The following example shows how to use the default link parameters.

A>net serv
B>wd /tr=net app

The following example shows how to use the name "tammy" as alink parameter.

A>net serv tammy
B>wd /tr=net;tamry app

10.2.3 PAR (Parallel)

Thislink communicates over the parallel port. Three different cable types may be used. They
are called the LapLink, Flying Dutchman, and WATCOM cables. Although the WATCOM
cable will communicate considerably faster than the other two, we have found it to be
unreliable on some printer cards. See "Wiring For Remote Debugging” on page 209.

The parameter to thislink is a number from 1 to 3 or the letter "p" followed by a hexadecimal
printer 1/O port address. Thistells the software which parallel port the cable is connected to
(LPT1, LPT2, LPT3). Thedefaultisl. The parameter used on each side of the link depends
on which printer port the cable is plugged into on that machine. It need not be the same on
both sides. The following example shows how to debug across aparallel cable plugged into
printer port 3 on one machine and port 2 on the other.

A>parserv 3
B>wd /tr=par;2 app

Link Descriptions 111

Remote Debugging

Asan dternative, you can specify aport addressto use. It isless convenient than specifying a
port number but will work on systems like OS/2 where the actual 1/0 port address cannot be
obtained from the system. The following example shows how to debug across a parallel cable
plugged into 1/O port 0x378 on one machine and port 2 on the other.

A>parserv p378
B>wd /tr=par;2 app

If you are going to debug a DOS extender application, then you must also specify atrap fileto
the server program. Thetrap file must be specified before the port number. The following
exampl e shows how to debug a 32-bit DOS/AGW application across a parallel cable plugged
into printer port 2 on one machine and port 3 on the other.

A>parserv /tr=rsi 2
B>wd /tr=par;3 app

The"RSI" trap fileis specified for DOS/AG(W) applications. Y ou can specify other trap files
for the other DOS extenders (e.g., "PLS" for Phar Lap). Do not forget to include other
required filesin the path.

RSI Both "DOSAGW.EXE" and the loader help file "RSIHELP.EXP' must also be
located in one of the directories listed in the DOS PATH environment variable.
See the section entitled "Debugging DOS/AG(W) 32-bit DOS Extender
Applications" on page 130 for more information on debugging applications that
use the DOS/AGW DOS extender.

PLS One or more of "RUN386.EXE" (or "TNT.EXE"), "DBGLIB.REX",
"PLSHELP.EXP", and "PEDHELP.EXP" must be located in one of the
directorieslisted in the DOS PATH environment variable. See the section
entitled "Debugging Phar Lap 32-bit DOS Extender Applications' on page 130
for more information on debugging applications that use the Phar Lap DOS
extender.

ADS See the section entitled "Debugging AutoCAD Applications' on page 131 for
more information on debugging AutoCAD applications.

10.2.4 SER (Serial)

Thislink communicates over the seria port. See the appendix entitled "Wiring For Remote
Debugging" on page 209 for wiring details. The debugger and server will automatically
synchronize on a communications speed. They may communicate at rates as high as 115kB.
The DOS and OS/2 "mode" command or the QNX "stty" commands need not be used.

112 Link Descriptions

Remote Debugging

The parameter to this link takes the form

port _nunber. baud_rate

port nunber isanumber from 1 to 3 indicating which serial port the cable is connected to.
The default is 1.

baud_r at e isthe maximum BAUD rate at which to communicate. If you already know the
maximum BAUD rate at which the two machines will communicate, this parameter will speed
up the connection time by eliminating some of the synchronization protocol.

baud_r at e may be any of 115200, 57600, 38400, 19200, 9600, 4800, 2400, or 1200. It
may be shortened to the first 2 digits.

A special BAUD rate of Oisaso allowed. Thisshould be used if the serial port has been
pre-assigned using the "mode" or "stty" commands. The pre-assigned BAUD rate is used and
the BAUD rate negotiation is avoided. Thiswill allow you to debug over a modem.

The following example shows how to debug across a serial cable using default settings:

A>serserv
B>wd /tr=ser app

The following example shows how to debug across a serial cable using seria port 2 on each
machine setting the maximum BAUD rate to 9600:

A>serserv 2.9600
B>wd /tr=ser;2.9600 app

QNX Note: Under QNX, anode id may be specified followed by a commaif the seria port
is not located on the current node. The command "serserv 3,1.9600" would use
the device //3/dev/serl at aBAUD rate of 9600. Alternatively, you can specify a
device such as/dev/foobar. To specify the maximum line speed, you can specify
something like /dev/foobar.56. Of course, you can also include anodeid such
as //5/dev/foobar.

A>serserv //3/dev/ser2.9600
B>wd /tr=ser;//5/dev/ser2.9600 app

If you are going to debug a DOS extender application, then you must also specify atrap fileto
the server program. Thetrap file must be specified before the port number and BAUD rate.
The following example shows how to debug a 32-bit DOS/4GW application across a serial
cable using serial port 1 on one machine and serial port 2 on the other machine setting the
maximum BAUD rate to 9600 for each:

Link Descriptions 113

Remote Debugging

A>serserv /tr=rsi 1.9600
B>wd /tr=ser;2.9600 app

The"RSI" trap file is specified for DOS/AG(W) applications. Y ou can specify other trap files
for the other DOS extenders (e.g., "PLS" for Phar Lap). Do not forget to include other
required filesin the path.

RS Both "DOSAGW.EXE" and the loader help file "RSIHELP.EXP" must also be
located in one of the directorieslisted in the DOS PATH environment variable.
See the section entitled "Debugging DOS/AG(W) 32-bit DOS Extender
Applications' on page 130 for more information on debugging applications that
use the DOS/AGW DOS extender.

PLS One or more of "RUN386.EXE" (or "TNT.EXE"), "DBGLIB.REX",
"PLSHELP.EXP", and "PEDHELP.EXP" must be located in one of the
directorieslisted in the DOS PATH environment variable. See the section
entitled "Debugging Phar Lap 32-bit DOS Extender Applications" on page 130
for more information on debugging applications that use the Phar Lap DOS
extender.

ADS See the section entitled "Debugging AutoCAD Applications' on page 131 for
more information on debugging AutoCAD applications.

10.2.5 WIN (Windows 3.x/95 Virtual DOS Machine)

This link communi cates between 2 Windows DOS boxes. In order to use thislink, you must
have Windows 3.x or Windows 95 installed on your machine. Y ou must run Windows 3.x in
enhanced mode. Y ou must also include the "device" specification listed below in the
[386Enh] section of your "SY STEM.INI" file (thisline is usually added during the Watcom
software installation process).

DEVI CE=C: \ WATCOM BI NW WDEBUG. 386

In order for thislink to work properly, you must ensure that thislink runsin a DOS box that
has background execution enabled.

The parameter to thislink is an arbitrary name to be used for the connection. This alows you
to have multiple remote debug sessions active simultaneously. The default name is WinLink.
The following examples show how to use the default name or specify alink name using the
Windows 3.x/95 VDM link.

114 Link Descriptions

Remote Debugging

A>W nserv
B>wd /tr=wi n app

A>wi nserv whats_i n_a_nane
B>wd /tr=win;whats_i n_a_nanme app

The following examples show how to debug a 32-bit extended DOS application using the
Windows 3.x/95 VDM link.

A>wWi nserv /tr=rsi
B>wd /tr=win app

A>winserv /tr=rsi whats_i n_a_name
B>wd /tr=win;whats_in_a name app

The"RSI" trap fileis specified for DOS/AG(W) applications. Y ou can specify other trap files
for the other DOS extenders (e.g., "PLS" for Phar Lap). Do not forget to include other
required filesin the path.

RS Both "DOSAGW.EXE" and the loader help file "RSIHELP.EXP' must also be
located in one of the directories listed in the DOS PATH environment variable.
See the section entitled "Debugging DOS/4AG(W) 32-bit DOS Extender
Applications' on page 130 for more information on debugging applications that
use the DOS/AGW DOS extender.

PLS One or more of "RUN386.EXE" (or "TNT.EXE"), "DBGLIB.REX",
"PLSHELP.EXP", and "PEDHELP.EXP" must be located in one of the
directorieslisted in the DOS PATH environment variable. See the section
entitled "Debugging Phar Lap 32-bit DOS Extender Applications' on page 130
for more information on debugging applications that use the Phar Lap DOS
extender.

10.2.6 NMP (Named Pipes)

The named pipes link allows you to communicate between any two sessions on an 0S/2
machine. Y ou can a so debug remotely between DOS, Windows 3.x and OS/2 machines if
you have installed remote named pipe support on these machines. See your network
documentation for details on remote named pipes.

In order to use named pipes, you must first run the NMPBIND program. This may run any

0S/2 machine on the network. 1t can be run detached, by putting the following line into your
OS2 CONFIG.SYS.

Link Descriptions 115

Remote Debugging

RUN=C: \ WATCOM BI NP\ NMPBI ND. EXE

If you run NMPSERVW under Win-OS/2, it must be run as a seamless Windows session.
Thisis dueto the fact that full screen Win-OS/2 sessions may not get any processor time
when they are not in the foreground.

The parameter to thislink can take the following forms:

nane
nane@machi ne

nane isan arbitrary name to be used for the connection. This allows you to have multiple
remote debug sessions active simultaneously. The default name is NMPLink.

machi ne isthe name of the machine on which the NMPBIND program isrunning. This
allows you to use remote named pipes.

The following example shows you how to use the named pipe link between two sessions on
the same OS/2 machine.

A>nnpserv
B>wd /tr=nnmp app

The following example assumes that there is a machine named HAL with aremote named
pipe server on the network which is running NMPBIND.

A>nnpserv nyl i nk@al
B>wd /tr=nnp; nylink@al app

10.2.7 VDM (Virtual DOS Machine)

VDM isactually alimited version of named pipes that does not require the NMPBIND
program to be running. It has severa restrictions however.

1. It does not support network debugging.

2. Under OS2, the debugger (user interface) must run in an OS/2 (not a DOS)
session. The debugger may also be started under Windows NT but not Windows
95 since it does not support named pipes.

3. Under OS2, the remote debug server must run in a seamless Win-OS/2 or aDOS
session.

4. Under Windows NT, the remote debug server will be runin aWindows NT Virtual
DOS Machine.

116 Link Descriptions

Remote Debugging

5. Under Windows 95, the remote debug server can be started but since Windows 95
does not support named pipes it will not work properly. See the section entitled
"WIN (Windows 3.x/95 Virtual DOS Machine)" on page 114 for an aternative.

6. If you arerunning VDMSERVW under Win-OS/2, it must be run as a seamless
Windows session. Thisis due to the fact that full screen Win-OS/2 sessions may
not get any processor time when they are not in the foreground.

The parameter to thislink is an arbitrary name to be used for the connection. This alows you
to have multiple VDM debug sessions active simultaneously. The default nameis VDMLink.
The following example shows how to use the VDM link:

A>vdnser v
B>wd /tr=vdm app

The following example shows how to use the VDM link specifying "brian" as the link name.

A>vdnserv brian
B>wd /tr=vdm brian app

10.2.8 TCP/IP (Internet Packets)

The TCP/IP link allows you to communicate between any two sessions using TCP/IPif you
have installed TCP/IP support. Y ou can also debug remotely between OS/2 and Windows
NT/95 machines if you have installed TCP/IP support on these machines. See your network
documentation for details on installing TCP/IP support.

In order to use TCP/IP to remotely debug a program, you must start the TCPSERV server
program first.

Example:
A>t cpserv
Socket port nunber: 3563
WATCOM TCP/ | P Debug Server
Version 11.0
Copyri ght by WATCOM I nt er nati onal
Press 'q to exit

The server program displays an available socket port number on the screen.

Y ou may specify a TCP/IP "service" as an argument on the command line. TCPSERV will
check the TCP/IP services list to find amatching service. If no argument is specified on the
command line, TCPSERYV uses "tcplink™ asthe service name. If no matching service nameis
found, TCPSERV attempts to convert the argument to a numeric port number and use that. |If
the argument can not be converted to a number, port number 3563 is used.

Link Descriptions 117

Remote Debugging

The TCP/IP serviceslist is stored in different places depending on the operating system.

0s/2 d: \ TCPI P\ ETC\ SERVI CES depending on the drive where TCP/IPis
installed
QNX / etcl/services

Windows 95 d: \ wi ndows\ SERVI CES depending on the drive and directory where
Windows 95 isinstalled

Windows NT d: \ W NNT35\ SYSTEM32\ DRI VERS\ ETC\ SERVI CES depending on the
drive where Windows NT isinstaled

Y ou will also need to know the Internet Protocol (IP) address of the machine running the
TCPSERV program. This can be in alphanumeric or numeric form (e.g., jdoe.watcom.on.ca
or 172.31.0.99). With the alphanumeric form, it is not necessary to specify the domain name
portion if the two machines are in the same domain.

To use the remote TCP/IP server, you must specify the TCP/IP trap file name to the debugger
along with an argument consisting of your IP address, optionally followed by a":" and the
service name or socket port number used by TCPSERYV. Y ou must also include the name of
the application you wish to run and debug on the remote machine.

Examplel:
A>t cpserv
B>wd /tr=tcp;jdoe app
or
B>wd /tr=tcp;172.31.0.99 app

Example2:
A>tcpserv 1024
B>wd /tr=tcp;jdoe: 1024 app
or
B>wd /tr=tcp;jdoe.watcom on. ca: 1024 app
or
B>wd /tr=tcp;172. 31.0.99: 1024 app

Exampl e3:
A>t cpserv dbgservice
B>wd /tr=tcp;jdoe: dbgservice app
or
B>wd /tr=tcp;jdoe.watcom on. ca: dbgservi ce app
or
B>wd /tr=tcp;172. 31. 0. 99: dbgservi ce app

118 Link Descriptions

Remote Debugging

The TCP/IP remote debug service permits debugging of applications anywhere on the
Internet. However, response will vary with the distances involved.

10.3 Specifying Files on Remote and Local Machines

In order to identify files on either the local or remote machine, two special prefixes are
supported.

@L The"@L" prefix isused to indicate that the file resides on the local machine (the
one on which the debugger is running).

@Q[d:][path]fil enane[.ext]

When "[path]" is not specified, the current directory of the specified drive of the
local machineisassumed. When "[d:]" is not specified, the current drive of the
local machine is assumed.

Example:
@OQUTPUT. LOG
@.D: \ CVDS
@.D: \ CVDS\ DATA. TMP

@R The"@R" prefix is used to indicate that the file resides on the remote machine.

@ d:][path]fil enane[.ext]

When "[path]" is not specified, the current directory of the specified drive of the
remote machineis assumed. When "[d:]" is hot specified, the current drive of
the remote machine is assumed.

Example:
@RWYAPPL. DAT
@RD: \ PROGRAMS\ EXE\ MYAPPL. LNK
@R PROGRAMS\ SRC
@R PROGRAMB\ SRC\ UI LI B. C

Thus afile may be identified in three different ways.

[d:][path]filename[.ext]
@Q[d:][path]fil enane[.ext]
@ d:][path]fil enane[.ext]

Specifying Files on Remote and Local Machines 119

Remote Debugging

A file of thefirst form resides on either the local or remote machine depending on whether the
current driveisalocal or remote drive. A file of the second form always resides on the local
machine. A file of the third form always resides on the remote machine.

Notes:

1

In the each form, the omission of "[d:]" indicates the current drive.

[path]fil enane[. ext]
@[path]fil ename[.ext]
@R[pat h] fil enane[. ext]

In the each form, the omission of "[path]" indicates the current path of the specified
drive.

[d:]fil enane[.ext]
@[d:]fil enane[.ext]
@ d:]fil enane[.ext]

Observe that if "[d:]" is omitted a so then the following forms are obtained:

filenane[.ext]
@fil ename[. ext]
@f il ename[. ext]

The special drive prefixes"@L" and "@R" cannot be used in your own application
to reference files on two different machines. These prefixes are recognized by the
Watcom Debugger only. Should the situation arise where one of your filenames
begins with the same prefix ("@L", "@I", "@R" or "@r") then "@@" can be used.
For example, if your wish to refer to the file on disk called " @link@" then you
could specify "@@Iink@". Notethat ".\@link@" would also suffice.

120 Specifying Files on Remote and Local Machines

Interrupting A Running Program

Interrupting A Running Program

122

11 Interrupting a Running Program

11.1 Overview

It is not unusual for your code to contain an endless loop that results in the program getting
stuck in one spot. Y ou then want to interrupt the program so that you can see whereit's
getting stuck. The process to give control back to the debugger is different for each operating
system.

11.2 DOS

Press the Print Screen key. Thiswill work if the program is stuck inaloop. If it has
misbehaved in some other way, Print Screen may have no effect since a misbehaved
application may overwrite code, data, the debugger, or operating system code.

11.3 Windows 3.x

Press CTRL-ALT-F. Windows must be running in enhanced mode and the device
WDEBUG.386 must be installed the [386Enh] section of SY STEM.INI for thisto work. You
cannot interrupt a running program under Win-OS/2.

11.4 Windows NT, Windows 95

If you are using the non-GUI version of the debugger, switch focus to the debugger screen and
press CTRL-BREAK.

If you are using the GUI-based version of the debugger or one of the remote debug servers,
switch focus to the debugger or debug server screen and click anywhere. When you switch to
the debugger screen, you will see a pop-up stating that:

The debugger cannot be used while the application is
running. Do you want to interrupt the application?

Windows NT, Windows 95 123

Interrupting A Running Program

If you select "Yes', the debugger will attempt to interrupt the application. If you select "No",
the debugger will resume waiting for the application to hit a breakpoint or terminate.

If you select "Yes' and the debugger cannot interrupt the application, you can click on the
debugger again and it will display a pop-up asking:

The debugger could not sucessfully interrupt your
application. Do you want to terminate the application?

If you select "Yes', the debugger will terminate your application. If you select "No", the
debugger will resume waiting for the program to hit a breakpoint or terminate.

Note: Under Windows 95, it is very difficult to interrupt a program that isin an infinite
loop or spending most of itstime in system API's. Under Windows 95, you can
only interrupt a program that is responding to messages (or looping in its own
thread code). If your program is an infinite loop, interrupting the program will
likely fail. The only optionin this caseis to terminate the program.

Thisis not an issue under Windows NT which has a superior debug API.

If you press CTRL-BREAK when the application has focus, you will terminate the application
being debugged rather than interrupting it.

11.50S/2

Use the program manager to switch focus to the debugger screen then press CTRL-BREAK.
If you press CTRL-BREAK when the application has focus, you will terminate the application
being debugged rather than interrupting it.

11.6 NetWare

On the NetWare file server console, press ALT-ESCAPE while holding down both SHIFT
keys. In some instances, this may cause the system debugger to become active instead of the
Watcom Debugger.

124 NetWare

Interrupting a Running Program

11.7 QNX

Switch focus to the debugger console and press CTRL-BREAK. Alternatively, you may send
any unhandled signal to the application being debugged. Consult your QNX system
documentation for details.

QNX 125

Interrupting A Running Program

126 QNX

Operating System specifics

Operating System specifics

128

12 Operating System Specifics

This section discusses the following topics:

DOS Extender debugging
See the section entitled "Debugging 32-bit DOS Extender Applications".

AutoCAD debugging
See the section entitled "Debugging AutoCAD Applications' on page 131.

NLM debugging
See the section entitled "Debugging a Novell NLM" on page 132.

Graphics programs
See the section entitled "Debugging Graphics Applications’ on page 133.

Windows 3.x debugging
See the section entitled "Debugging Windows 3.x Applications" on page 133.

DLL debugging
See the section entitled "Debugging Dynamic Link Libraries' on page 134.

Disabling 386/486 debug registers
See the section entitled "Disabling Use of 386/486 Debug Registers’ on page
135.

QNX debugging
See the section entitled "Debugging Under QNX" on page 135.

12.1 Debugging 32-bit DOS Extender Applications

The Watcom Debugger supports debugging of 32-bit applications developed with Watcom
C/C++32, Watcom FORTRAN 7732, and assembly language. A DOS extender must be used
to run the application. The following DOS extenders are supported.

Debugging 32-bit DOS Extender Applications 129

Operating System specifics

DOS/AGW aDOS extender from Tenberry Software, Inc. DOS/AGW is a subset of
Tenberry Software’s DOS/4G product. DOS/AGW is customized for use with
Watcom C/C++32 and Watcom FORTRAN 7732 and is included in these
packages.

386|DOS-Extender
(version 2.2d or later) a DOS extender from Phar Lap Software, Inc.

12.1.1 Debugging DOS/4G(W) 32-bit DOS Extender Applications

When using the Tenberry Software DOS extender, the "DOSAGW.EXE" or "DOSAG.EXE"
file must be located in one of the directories listed in the DOS PATH environment variable.
The "DOAGW.EXE" file will usualy be stored in the "BINW" directory of the WATCOM
compiler package. You must also use the TRap=RS option. The"RSI.TRP" file will usualy
be stored in the "BINW" directory of the WATCOM compiler package. Y ou should ensure
that this"BINW" directory isincluded in the DOS PATH environment variable. Otherwise,
you must specify the full path name for the trap file.

The help file "RSIHELP.EXP" must also be located in one of the directorieslisted in the DOS
PATH environment variable. It will usually be stored in the "BINW" directory of the
WATCOM compiler package.

Example:
Cwd /trap=rsi hello
or
C>set wd=/trap#r si
Cwd hello

12.1.2 Debugging Phar Lap 32-bit DOS Extender Applications

When using the Phar Lap Software, Inc. DOS extender, the "RUN386.EXE" (or
"TNT.EXE"), "DBGLIB.REX", "PLSHELP.EXP", and "PEDHELP.EXP" files must be
located in one of the directories listed in the DOS PATH environment variable. Y ou must
also use the TRap=PLSoption. The"PLS.TRP", "PLSHELP.EXP" and "PEDHEL P.EXP"
fileswill usually be stored in the "BINW" directory of the WATCOM compiler package. You
should ensure that this "BINW" directory isincluded in the DOS PATH environment
variable. Otherwise, you must specify the full path name for the trap file.

Parameters are passed to the "RUN386" or "TNT" DOS extender using the TRap option. The

entire parameter must be placed within braces. The following exampleillustrates how to
debug a Phar Lap application passing the -maxreal switch to RUN386.EXE or TNT.EXE.

130 Debugging 32-bit DOS Extender Applications

Operating System Specifics

Example:
Cwd /trap=pls;{-maxreal 512} hello
or
C>set wd=/trap#pls; {- maxreal 512}
Cwd hello

12.2 Debugging AutoCAD Applications

The Watcom Debugger can be used to debug AutoCAD Development System (ADS) and
AutoCAD Device Interface (ADI) applications. Before running the debugger, add aline
similar to the following to your "ACAD.ADS" file. Thisline specifiesthe path to the
"ADSHELP.EXP" file.

C. \ WATCOM Bl NW ADSHELP. EXP
Thefile"ACAD.ADS" contains alist of AutoCAD applications that are |oaded by AutoCAD
when AutoCAD is started. "ADSHELP.EXP" isan AutoCAD application that is required by
the debugger for debugging AutoCAD applications.

To debug an ADS application, aspecial trap file"ADS.TRP" must be used.

WD /TRap=ADS

If you do not have a two-monitor setup, you should also specify the Swap option.

WD /TRap=ADS /Swap

Note that we did not specify the AutoCAD executable file; the trap file, "ADS.TRP", will load
AutoCAD automatically. You should now bein the debugger. At this point, choose
Command from the File menu and enter the following debugger command specifying the
name of the file containing your AutoCAD application (e.g., foo.exp).

Debugging AutoCAD Applications 131

Operating System specifics

Example:
DBG>ads fo0o0. exp

Thefile"ADS.DBG" contains a sequence of debugger commands that starts AutoCAD, loads
the debugging information from the executable file you specify, and rel ocates address
information based on the code and data selector values for your application.

Y ou should now bein AutoCAD. When you load your AutoCAD application from
AutoL | SP, the debugger will be entered and source for your program should be displayed in
the source window.

Example:
xl oad "foo. exp"

Y ou are now ready to debug your AutoCAD application.

12.3 Debugging a Novell NLM

Novell NLM’s may only be debugged remotely. Y ou must use either the serial, parallel, or
Novell SPX link. Thereare 5 NLM’sdistributed in the WATCOM package. The following
table describes their use:

Net Ware 3.11/3.12 Net Ware 4. 01
Seri al serserv4.nlm
Par al | el parserv3.nl m parserv4.nl m
SPX novserv3.nlm novser v4. nl m

To start remote debugging, you load one of the above NLMs at the NetWare file server
console. The debugger isthen invoked asin any remote debugging session. See the chapter
entitled "Remote Debugging" on page 105 for parameter details. See the appendix entitled
"Wiring For Remote Debugging" on page 209 for parallel/serial cable details.

For example, on aNetWare 4.01 server type: | oad novserv4

On aworkstation, type: WD /tr=nov nynl m

Debugging information for every running NLM isavailable. You can debug any NLM in the
system asif it were part of your application, aslong as you created it with debug information.

If the NLM does not have WATCOM style debugging information, the debugger will attempt
to use any debugging information created by Novell’s linker (NLMLINK).

132 Debugging a Novell NLM

Operating System Specifics

12.4 Debugging Graphics Applications

When debugging a graphics application, there are a number of Watcom Debugger command
line options that could be specified depending on your situation.

1

If you only have one monitor attached to your system, use the Swap option. The
Swap option specifies that the application’s screen memory and the debugger’s
screen memory are to be swapped back and forth using a single page.

If you have two monitors attached to your system then the Two and Monochrome
options should be used. The Two option specifies that a second monitor is
connected to the system. Note that if the monitor type (Monochrome, Color,
Colour, Egad3, Vga50) is not specified then the monitor that is not currently being
used is selected for the debugger’s screen. If you specify Monochrome then the
monochrome monitor will be used for the debugger’ s screen.

If you are debugging the graphics application using a second personal computer
and the remote debugging feature of the Watcom Debugger then the choice of
display and operation mode for the Watcom Debugger isirrelevant. If one system
is equipped with a graphics display and the other with a monochrome display then
you will undoubtedly use the system equipped with the monochrome display to run
the Watcom Debugger.

12.5 Debugging Windows 3.x Applications

Both a character mode and a GUI debugger are supplied that run in the Windows
environment. Y ou must choose which of these debuggers you are going to use. They both
have advantages and disadvantages. When your application is suspended, the GUI and
character mode debuggers behave differently. The GUI debugger allows other applications to
continue running. The character mode debugger does not. Although the GUI debugger has a
much nicer looking user interface, you should not use it under some circumstances. Y ou can
always use the character mode debugger. Y ou should be aware of the following restrictions:

1

2.
3.

If you are trying to debug an applications that uses DDE you should not use the
GUI debugger.

Do not try to use the GUI debugger to debug system modal dialogs.

If you hit a break-point in adialog callback procedure or in your window procedure
when it isreceiving certain events (e.g.,, WM_MENUSELECT), the GUI debugger
will lock input to itself. When this happens, you will not be able to switch away
from the debugger, and no other application will repaint themselves. When this

Debugging Windows 3.x Applications 133

Operating System specifics

happens, pop-up menus will not draw correctly and you will have to use the Action
menu instead. Y ou should not try to quit the debugger when it isin this state.
4. Do not try to use either of the Windows debuggers in a seamless Win-OS/2 session.

If you find that the Windows debugger startstoo slowly, try using the DIp=WATCOM option.
This prevents the debugger from searching each DLL in the system for debugging
information. It will start up faster, but you will not be able to see the name of the Windows
API cals.

To start the Watcom Debugger, select the program group in which you have installed the
Watcom Debugger. One of the icons presented is used to start the debugger. Double-click on
the Watcom Debugger icon.

Y ou can make special versions of the Watcom Debugger icon using Properties from the File
menu of the Windows "Program Manager". For example, you can add any options you wish
to the "Command Line" field of the "Properties’ window. When you click on the newly
created icon, the options specified in the "Command Line" field are the defaults. Aslong as
no executable file name was specified in the "Command Line" field, the Watcom Debugger
will present its prompt window. In the prompt window, you can specify an executable file
name and arguments.

If you are debugging the same program over and over again, you might wish to create an icon
that includes the name of the file you wish to debug in the "Command Line" field. Each time
you click on that icon, the Watcom Debugger is started and it automatically loads the program
you wish to debug.

12.6 Debugging Dynamic Link Libraries

The debugger automatically detects all DLLs that your application references when it loads
the application. When your program loads a DLL dynamically, the debugger detects this as
well. If you have created your DLL with debugging information, you can debug it just asif it
were part of your application. Even if it does not have debugging information, the debugger
will process system information to make the DLL entry point namesvisible. There areafew
limitations:

1. Youcannot debug your DLL initialization code. Thisisthe first routine that the
operating system runs when it loadsthe DLL. Thisis not normally a problem,
since most DLLs do not do much in the way of initialization.

2. WhenaDLL isloaded dynamically, its debugging information may not be
available immediately. Try tracing afew instructions and it will appear.

134 Debugging Dynamic Link Libraries

Operating System Specifics

3. If you restart an application, you will lose any break points that you had set in
dynamically loaded DLLs. You need to trace back over the call to LoadModule or
DOSL oadModule and re-set these break points.

12.7 Disabling Use of 386/486 Debug Registers

It may be necessary to prevent the Watcom Debugger from using the 386/486 Debug
Registers (a hardware feature used to assist debugging). This situation arises with certain
DOS control programs that do not properly manage Debug Registers. If the Watcom
Debugger fails upon startup on a 386/486 system, it is agood indication that use of the Debug
Registers must be disabled. With"STD.TRP", the trap file parameter "d" may be specified to
disable the use of Debug Registers. The following exampleillustrates the specification of the
"d" trap file parameter.

Example:
Cwd /trap=std;d cal endar

12.8 Debugging Under QNX

When the debugger starts up, it will attempt to open the initiaization file . wdr ¢ provided
that you have not specified the Invoke command line option. It looks for thisfilein al the
usual places (CWD, WD_PATH, / usr/ wat conf <ver >/ wd, /usr/wat coni wd).
Thisfile normally contains your customization commands. If itisfound, it is processed asthe
default configuration file. Y ou would normally place thisfile in your home directory.

If the file does not exist, the debugger then looks for the wd. dbg file.

If you do not want the debugger to use the . wdr ¢ file then you can do one of two things —
make sure that it cannot be located (e.g., deleteit) or use the Invoke command line option (you
could specify the wd. dbg file asthe target).

The supplied version of the wd. dbg file contains an "invoke" command referencing the file
set up. . dbg Thisfile, inturn, contains a"configfile" command and "invoke" commands
referencing other command files. The "configfile" command marks set up. dbg asthe
default file name to use when the debugger writes out the current configuration.

The following section entitled "Debugging Under QNX Using the Postmortem Dump
Facility" on page 136 describes the use of the debugger with the Postmortem dump facility.
The following section entitled " Search Order for Watcom Debugger Support Files under
QNX" on page 138 describes the search order for debugger files under QNX.

Debugging Under QNX 135

Operating System specifics

12.8.1 Debugging Under QNX Using the Postmortem Dump Facility

A limited form of debugging of an application that has terminated and produced a postmortem
dump can be done under QNX. In order to use this feature, you must start the QNX "dumper"
program.

dumper [-d path] [-p pid] &

dumper is the program name for the QNX postmortem dump program.

-d path The name of the directory in which postmortem dumps are written. If not
specified, the default is the user’ s home directory.

-p pid Save adump file for this process if it terminates for any reason. Do not save a
dump file for any other process.

& must be specified so that the shell isrejoined.

Example:
$ dunper &
$ dunper -d /usr/fred/dunp_area &

Whenever a program terminates abnormally, adump of the current state of the programin
memory iswritten to disk. The dump file name is the same as the program name with a.dmp
extension. For example, if the program name is a.out then the dump will be written to the
/home/userid/a.out.dmp file.

Y ou can use the -d option of the dumper program to force all dumpsinto a single directory
rather than into the invoking user’s home directory.

The -p option lets you monitor a particular process. Y ou can run multiple copies of the
dumper program, each monitoring a different process.

If the Watcom Debugger was being used to debug the program at the time that it abnormally
terminated then the dump is written to the user’ s home directory provided that the -d option
was not used.

To examine the contents of the postmortem dump, the Watcom Debugger may be used. The

interface between the Watcom Debugger and the postmortem dump is contained in a special
"trap” file. Thetrap fileis specified to the Watcom Debugger using the TRap option.

136 Debugging Under QNX

Operating System Specifics

wd -TRap=pmd([;i] [:sym_fil€] file_spec

wd

is the program name for the Watcom Debugger.

-TRap=pmd[i] must be specified when debugging an application that has terminated and

sym file

file_spec

produced a postmortem dump. The optional ";i" is specified when the
modification date of the original program file does not match the information
contained in the dumper file. It indicates that the symbolic debugging
information in the program file may be out-of-date. It instructs the Watcom
Debugger to ignore the date mismatch. Depending on the shell that you are
using, it may be necessary to place the option specification in quotation marks if
you include the optional ";i".

Example:
$wd "-trap=pnd;i" nyapp

is an optional symbolic information file specification. The specification must be
preceded by acolon (":"). When specifying a symbol file name, a path such as
"//5/etc/" may beincluded. For QNX, the default file suffix of the symboal fileis

.Sym".

isthe file name of the dumper file to be loaded into memory. When specifying a
file name, a path such as"//5/etc/" may be included. If apath isomitted, the
Watcom Debugger will first attempt to locate the file in the current directory
and, if not successful, attempt to locate the file in the default dumper directory:
/usr/dumps.

Basically, the Watcom Debugger is fully functional when a postmortem dump is examined.
However, there are some operations which are not allowed. Among these are:

1.

2.

Task execution cannot be restarted using Go from the Run menu.

A register can be modified for the purposes of expression evaluation. Y ou can
choose Go from the Run menu to restore the register contents to their original
postmortem state.

Memory cannot be modified.

Memory outside of regions owned by the program cannot always be examined.

I/O ports cannot be examined.

Debugging Under QNX 137

Operating System specifics

12.8.2 Search Order for Watcom Debugger Support Files under QNX

There are several supporting files provided with the Watcom Debugger. Thesefilesfall into
five categories.

1. Watcom Debugger command files (files with the ".dbg" suffix).
2. Watcom Debugger trap files (fileswith the ".trp" suffix).

3. Watcom Debugger parser files (fileswith the ".prs" suffix).

4. Watcom Debugger help files (files with the ".hlp" suffix).

5. Watcom Debugger symbolic debugging information files (files with the ".sym"
suffix).

The search order for Watcom Debugger support filesis as follows:

the current directory,

the paths listed in the WD_PATH environment variable,

the path listed in the HOM E environment variable, and, finally,
the "/usr/watcom/wd" directory.

AwWDdDE

Y ou should note the following when using the remote debugging feature of the Watcom
Debugger. When the REMotefiles option is specified, the debugger also attempts to locate the
Watcom Debugger’ s support files (command files, trap files, etc.) on the task machine.

138 Debugging Under QNX

Expressions

Expressions

140

13 Watcom Debugger Expression Handling

13.1 Introduction

The Watcom Debugger is capable of handling awide variety of expressions. An expression is
a combination of operators and operands selected from application variables and names,
debugger variables, and constants. Expressions can be used in alarge number of debugger
commands and dialogs. For example, the evaluated result of an expression may be displayed
by choosing New from the pop-up menu in the Watches window or by using the print
command.

The appropriate syntax of an expression, i.e., the valid sequence of operators and operands,
depends on the grammar of the language that is currently established. The Watcom Debugger
supports the grammars of the C, C++, and FORTRAN 77 languages. A grammar is selected
automatically by the debugger when tracing the execution of modulesin an application. For
example, part of an application may be written in C, another part in C++, and another part in
FORTRAN 77. The modules must have been compiled by one of the WATCOM C, C++ or
FORTRAN 77 compilers. When tracing into a module written in one of these languages, the
debugger will automatically select the appropriate grammar. In addition to this automatic
selection, aparticular grammar may be selected using the debugger Set L Anguage command.
The language currently selected can be determined using the SHow Set L Anguage command.

13.2 General Rules of Expression Handling

The debugger handles two types of expressions. The difference between the two types of
expressionsis quite subtle. Oneis called an "expression" and things operate as you would
normally expect. Thistype of expression isused for all "higher" level operations such as
adding items to the Watches window. The other typeis called an "address expression”. Itis
used whenever the debugger prompts for an address and in lower level commands such
Examine and Modify. If the notation for a particular command argument is <address>, it is
an address expression. If it endsin just "expr” then it isanormal expression. The difference
between the two forms lies in how they treat symbol names. In anormal expression the value
of asymbol isitsrvalue, or contents. In an address expression, the value of asymbol is
(sometimes) its Ivalue, or address.

General Rules of Expression Handling 141

Expressions

Consider the following case. You have asymbol samat offset 100 and the word at that
location contains the value 15. If you enter saminto the watches window you expect the
value 15 to be printed and since the Watches window takes a normal expression that iswhat
you get. Now let ustry it with the Breakpoint dialog. Enter samin the addressfield. The
Breakpoint dialog uses the result of its expression as the address at which to set a breakpoint.
The Breakpoint dial og takes an address expression, and an implicit unary "&" operator is
placed in front of symbols. The debugger has a set of heuristics that it appliesto determine
whether it should use the rvalue or lvalue of asymboal.

13.3 Language Independent Variables and Constants

The following sections describe conventions used in the debugger for identifying modules,
variables, line numbers, registers, etc.

13.3.1 Symbol Names

Regardless of the programming language that was used to code the modules of an application,
the names of variables and routines will be available to the debugger (provided that the
appropriate symbolic debugging information has been included with the application’s
execution module). The debugger does not restrict the way in which names are used in
expressions. A name could represent a variable but it could also represent the entry point into
aroutine.

The syntax of a symbol name reference is quite complicated.

[[[image] @][module] @] [routine_name.]symbol _name
Generally, an application will consist of many modules which were compiled separately. The
current image is the one containing the module which is currently executing. The current
module is the one containing the source lines currently under examination in the Source or
Assembly window. By default, the Source window’ stitle line contains the current module
name. The current routine is the one containing the source line at which execution is currently
paused.

The following are examples of references to symbol names.

142 Language Independent Variables and Constants

Watcom Debugger Expression Handling

Example:
synbol _nane
mai n
W nMai n
FMAI N
printf
LI B$G_OPEN
stdin

If the symbol does not exist in the current scope then it must be qualified with its routine
name. Generally, these are variables that are local to a particular routine.

Example:
routi ne_nane. synbol _nane
mai n.curr _tinme
mai n. tyne
SUBL. X
SUB2. X

If the symbol is not externally defined and it does not exist in the current module then it may
be qualified with its module name. In the C and C++ programming languages, we can define
avariable that is global to a module but known only to that module ("static" storage class).

Example:
static char *NarrowTitle = { "Su Mo Tu W Th Fr Sa" };

In the above example, "NarrowTitle" is global to the module "calendar”. If the current
moduleis not "calendar" then the module name can be used to qualify the symbol as shown in
the following example.

Example:
cal endar @NarrowTi tl e

If the symbol islocal to aroutine that is not in the current module then it must be qualified
with its module name and routine name.

Example:
nodul e_name@ out i ne_nane. synbol _nane
cal endar @mi n. curr _tinme
cal endar @mi n. tymne
subs@UBL. X
subs@UB2. X

If the symbol islocal to an image that is not in the current executable then it must be fully
qualified with the image name.

Language Independent Variables and Constants 143

Expressions

Example:
prog_nane@ out i ne_nane
pr og_nane@mwdul e_nanme@ out i ne_nane
pr og_nane@mwodul e_nanme@ out i ne_nane. synbol _nane
dl | _namre@al endar @rai n. curr _ti ne
dl I _namre@al endar @i n. tyne
program@ubs @UBL. X
program@ubs @UB2. X

Thereisaspecia case for the primary executable image. Thisisthe name of the program you
specified when you started the debugger. Y ou can reference it by omitting the image name.
The following examples all refer to symbolsin the primary executable image:

Example:
@A nMai n
@rodul e@V nMai n
@@ out i ne. synbol

In the FORTRAN 77 programming language, all variables (arguments, local variables,
COMMON block variables) are available to the subprogram in which they are defined or
referenced. The same symbol name can be used in more than one subprogram. If itisalocal
variable, it represents a different variable in each subprogram. If it isan argument, it may
represent a different variable in each subprogram. If it isavariablein a COMMON block, it
represents the same variable in each subprogram where the COMMON block is defined.

Example:
SUBROUTI NE SUBL1(X)
REAL Y
COWON / BLK/ Z

END

SUBROUTI NE SUB2(X)
REAL Y

COWON /BLK/ Z

END

In the above example, "X" is an argument and need not refer to the same variable in the
calling subprogram.

144 Language Independent Variables and Constants

Watcom Debugger Expression Handling

Example:
CALL SuUB1(A)
CALL SuB2(B)

Thevariable "Y" isadifferent variable in each of "SUB1" and "SUB2". The COMMON
block variable "Z" refersto the same variable in each of "SUB1" and "SUB2" (different
names for "Z" could have been used). To refer to"X","Y", or "Z" in the subprogram
"SUB2", you would specify "SUB2.X", "SUB2.Y", or "SUB2.Z". If "SUB2" wasin the
module "MOD" and it is not the current module, you would specify "MOD@SUB2.X",
"MOD@SUB2.Y", or "MOD@SUB2.Z".

Note; Globa and local symbol name debugging information isincluded in an
executable image if you request it of the linker. However, local symbol
information must be present in your object files. The WATCOM C, C++ and
FORTRAN 77 compilers can include local symbol debugging information in
object files by specifying the appropriate compiler option. See "Preparing a
Program to be Debugged" on page 9.

13.3.2 Line Numbers

Regardless of the programming language that was used to code the modules of an application,
line number information identifying the start of executable statements will be available to the
debugger (provided that the appropriate symbolic debugging information has been included
with the application’s execution module). The debugger does not restrict the way in which
line number references are used in expressions. A line number represents the code address of
an executable statement in aroutine. Not all line numbers represent executable statements;
thus some line numbers may not be valid in an expression. For example, source lines
consisting of comments do not represent executable statements.

The general format for aline number referenceis:
[[image] @] [module_name] @ decimal_digits

The following are examples of references to executable statements.

Language Independent Variables and Constants 145

Expressions

Example:
@36
@5
@1
@25
hel |l o@®
@ello@®
prog@el | 0@
ot her prg@oodbye@®
puzzl e@0
cal endar @0
SUB1 @0

If the line number does not exist in the current module, it must be qualified with its module
name. If it does not exist in the current image, it must be qualified with the image name. Line
numbers are not necessarily unique. For example, an executable statement could occur at line
number 20 in several modules. The module name can always be used to uniquely identify the
line 20 in which we are interested. In the above examples, we explicitly refer to line 20 in the
module "calendar”. When the module name is omitted, the current module is assumed.

Note; Line number debugging information isincluded in an executable image if you
request it of the linker. However, line number information must be present in
your object files. The WATCOM C, C++ and FORTRAN 77 compilers can
include line number debugging information in object files by specifying the
appropriate compiler option. See "Preparing a Program to be Debugged” on
page 9. You can request line number debugging information when assembling
assembly language source files using Microsoft sSMASM Version 5. The"zd"
option must be specified on the command line.

13.3.3 Constants

A constant can be arithmetic or character. Each constant has a data type associated with it.
Arithmetic constants consist of those constants whose data type is one of integer, real, or
complex (FORTRAN only). C treats character constants like arithmetic constants so they can
be used in arithmetic expressions. FORTRAN treats character constants as constants of type
CHARACTER so they cannot be used in arithmetic expressions.

13.3.3.1 Integer Constants

An integer constant is formed by a non-empty string of digits preceded by an optional radix
specifier. The digits are taken from the set of digits valid for the current radix. If the current
radix is 10 then the digitsare 'O through’9'. If the current radix is 16 then the digitsare 'O’
through'9" and’A’ through'F or ’a through 'f'. See"The Options Dialog" on page 36.

146 Language Independent Variables and Constants

Watcom Debugger Expression Handling

The following are examples of integer constants.

Example:
123
57DE
1423
345
34565788

Radix specifiers may be defined by the user, but two are predefined by the debugger. 0x may
be defined to be aradix specifier for hexadecimal (base 16) numbers. On may be defined to be
aradix specifier for decimal (base 10) numbers

Example:
0x1234 hexadeci mal
0Onl1l234 deci mal
255 deci nal
Oxf f hexadeci mal
Ox1ADB hexadeci mal
0n200 deci mal
0x12f cO hexadeci mal

13.3.3.2 Real Constants

Wefirst define asimple real constant as follows. an optional sign followed by an integer part
followed by a decimal point followed by afractional part. Theinteger and fractional parts are
non-empty strings of digits. The fractional part can be omitted.

A real constant has one of the following forms.

(N} A simple real constant.

2 A simplereal constant followed by an E or e followed by an optionally signed
integer constant.

The optionally signed integer constant that follows the E is called the exponent. The value of
area constant that contains an exponent is the value of the constant preceding the E
multiplied by the power of ten determined by the exponent.

The following are examples of real constants.

Language Independent Variables and Constants 147

Expressions

123. 764

0. 4352344
1423. 34E12
+345. E- 4

- 0. 4565788E3
2. E6

1234.

Note: The accepted forms of floating-point constants are a subset of that supported by
the FORTRAN 77 programming language. The debugger does not support
floating-point constants that begin with a decimal point (e.g., .4352344) or have
no decimal point (e.g., 2E6). However, both forms would be acceptable to a
FORTRAN compiler. Also, the debugger does not support double precision
floating-point constants where "D" is used instead of "E" for the exponent part
(e.g., 2D6, 2.4352344D6). All floating-point constants are stored internally by
the debugger in double precision format.

13.3.3.3 Complex Constant (FORTRAN Only)

A complex constant consists of aleft parenthesis, followed by areal or integer constant
representing the real part of the complex constant, followed by a comma, followed by areal or
integer constant representing the imaginary part of the complex constant, followed by aright
parenthesis.

The following are examples of complex constants.

(1423.34E12, 3)
(+345, 4)

Complex constants will be accepted when the debugger’ s currently established language is

FORTRAN. The language currently selected can be determined using the SHow Set
L Anguage command.

13.3.3.4 Character Constant (C Only)

In the C and C++ programming languages, a character constant consists of an apostrophe
followed by a single character followed by an apostrophe. The apostrophes are not part of the
datum. An apostrophe in a character datum represents one character, namely the apostrophe.
A character constant must have length 1.

The following are examples of character constants.

148 Language Independent Variables and Constants

Watcom Debugger Expression Handling

"o >

The C/C++ form of a character constant will be accepted when the debugger’s currently
established language is C or C++. The language currently selected can be determined using
the SHow Set LAnguage command.

13.3.3.5 Character String Constant (FORTRAN Only)

In the FORTRAN 77 programming language, a character constant consists of an apostrophe
followed by any string of characters followed by an apostrophe. The apostrophes are not part
of the datum. If an apostrophe is to appear as part of the datum it must be followed
immediately by another apostrophe. Note that blanks are significant. The length of the
character constant is the number of characters appearing between the delimiting apostrophes.
Consecutive apostrophesin a character datum represent one character, namely the apostrophe.
A character constant must not have length O.

The following are examples of character constants.

' ABCDEFGL234567’
"There' ' s al ways tonorrow

The FORTRAN form of a character constant will be accepted when the debugger’ s currently
established language is FORTRAN.

13.3.4 Memory References

In addition to referring to memory locations by symbolic name or line number, you can also
refer to them using a combination of constants, register names, and symbol names. Inthe
Intel 80x86 architecture, a memory reference requires a segment and offset specification.
When symbol names are used, these are implicit. The general form of a memory referenceis:

[segment:]offset

When an offset is specified alone, the default segment value is taken from the CS, DS or SS
register depending on the circumstances.

Language Independent Variables and Constants 149

Expressions

13.3.5 Predefined Debugger Variables

The debugger defines a number of symbols which have special meaning. These symbols are
used to refer to the computer’ s registers and other special variables.

General Purpose Registers
eax, ax, al, ah, ebx, bx, bl, bh, ecx, cx, cl, ch, edx, dx, dl, dh

Index Registers
es, s, edi, di

Base Registers
esp, sp, ebp, bp

I nstruction Pointer
eip, ip

Segmentation Registers
cs, ds, es, fs, gs, ss

Flags Registers
fl, fl.o, fl.d, fl.i, fl.s, fl.z, fl.a, fl.p, fl.c, efl, fl.o, efl.d, €fl.i, €fl.s, efl .z, efl.a, €fl.p,
efl.c

8087 Registers
St0, stl, st2, st3, st4, st5, st6, st7

8087 Control Word
CW, CW.iC, CW.FC, CW.pC, CW.iem, Cw.pm, CW.um, cw.om, cw.zm, cw.dm, cw.im

8087 Status Word
Sw, Sw.b, sw.c3, sw.st, sw.c2, sw.cl, sw.cO, sw.es, SW.sf, Sw.pe, Sw.ue, sw.oe,
Sw.ze, sw.de, sw.ie

Miscellaneous Variables
dbg$32, dbg$bottom, dbgbp, dbgcode, dbg$cpu, dbgscetid, dbg$data,
dbg$etid, dbg$fpu, dbgip, dbgleft, dog$monitor, dog$os, dbgpid, dbgpsp,
dbg$radix, dog$remote, dog$right, dog$sp, dogtop, dbgnil, dbg$src,
dbg$loaded

The debugger permits the manipulation of register contents and special debugger variables

(e.g., dbg$32) using any of the operators described in this chapter. By default, these
predefined names are accessed just like any other variables defined by the user or the

150 Language Independent Variables and Constants

Watcom Debugger Expression Handling

application. Should the situation ever arise where the application defines a variable whose
name conflicts with that of one of these debugger variables, the module specifier _dbg may
be used to resolve the ambiguity. For example, if the application definesavariable called cs
then _dbg@s can be specified to resolve the ambiguity. The" _dbg@" prefix indicates that
we are referring to a debugger defined symbol rather than an application defined symbol. See
"Predefined Symbols" on page 201.

13.3.6 Register Aggregates

There are times when a value may be stored in more than one register. For example, a 32-hit
"long" integer value may be stored in the register pair DX:AX. We require a mechanism for
grouping registersto represent a single quantity for usein expressions.

We define the term "register aggregate” as any grouping of registersto form asingle unit. An
aggregate is specified by placing register namesin bracketsin order from most significant to
least significant. Any aggregate may be specified aslong asit formsan 8, 16, 32 or 64-bit
quantity. The following are examples of some of the many aggregates that can be formed.

Example:
8- bit [al]
16-bit [ah al]
16-bi t [bl ah]
16-bit [ax]
32-bit [dx ax]
32-bit [dh dI ax]
32-bit [dh dI ah al]
32-bit [ds di]
64-bi t [ax bx cx dx]
64-bi t [edx eax] (386/ 486/ Penti um onl y)

In some cases, the specified aggregate may be equivalent to aregister. For example, the
aggregates "[ah al]" and "[ax]" are equivalent to "ax".

The default type for 8-bit, 16-bit, and 32-bit aggregates isinteger. The default type for 64-bit

aggregates is double-precision floating-point. To force the debugger into treating a 32-hit
aggregate as single-precision floating-point, the type coercion operator "[float]" may be used.

Language Independent Variables and Constants 151

Expressions

13.4 Operators for the C Grammar

The debugger supports most C operators and includes an additional set of operators for
convenience. The WATCOM C Language Reference manual describes many of these
operators.

The syntax for debugger expressions is similar to that of the C programming language.
Operators are presented in order of precedence, from lowest to highest. Operators on the
same line have the same priority.

Lowest Priority
Assi gnnment Operators
= += -= *= [= O &= | = A= <<= >>=
Logi cal Operators

|
&&

Bit Operators
I

AN

&
Rel ati onal QOperators

== |=

< <= < >=
Shift Operators

<< >>
Arithnetic Operators

+ -

* %

Unary Operators
+ - ~ 1l + - & * %
si zeof unary_expr
si zeof (type_nane)
(type_name) unary_expr
[type_nane] unary_expr
?

Bi nafy Addr ess Oper at or

H ghest Priority
Parentheses can be used to order the evaluation of an expression.

In addition to the operators listed above, a number of primary expression operators are
supported. These operators are used in identifying the object to be operated upon.

152 Operators for the C Grammar

Watcom Debugger Expression Handling

->

subscripting, substringing
function call
field selection

field selection using a pointer

The following sections describe the operators presented above.

13.4.1 Assignment Operators for the C Grammar

Op=

<<=

Assignment: The value on theright is assigned to the object on the left.

Additive assignment: The value of the object on the left is augmented by the
value on the right.

Subtractive assignment: The value of the object on the left is reduced by the
value on the right.

Multiplicative assignment: The value of the object on the left is multiplied by
the value on theright.

Division assignment: The value of the object on the left is divided by the value
on the right.

Modulus assignment: The object on the left is updated with MOD(left,right).
Theresult is the remainder when the value of the object on the left is divided by
the value on the right.

Bit-wise AND: The hitsin the object on the left are ANDed with the bits of the
value on theright.

Bit-wiseinclusive OR: The bitsin the object on the left are ORed with the bits
of the value on theright.

Bit-wise exclusive OR: The bitsin the object on the left are exclusively ORed
with the bits of the value on the right.

Left shift: The bitsin the object on the left are shifted to the left by the amount
of the value on theright.

Operators for the C Grammar 153

Expressions

>>=

Right shift: The bitsin the object on the left are shifted to the right by the
amount of the value on theright. If the object on the left is described as
unsigned, the vacated high-order bits are zeroed. If the object on the left is
described as signed, the sign bit is propagated through the vacated high-order
bits. The debugger treats registers as unsigned items.

13.4.2 Logical Operators for the C Grammar

&&

Logical conjunction: Thelogical AND of the value on the left and the value on
theright is produced. If either of the values on the l€eft or right is equal to 0 then
theresult is 0; otherwise the result is 1.

Logicd inclusive disiunction: The logical OR of the value on the left and the
value on theright is produced. If either of the values on the left or right is not
equal to 0 then theresult is 1; otherwise the result is 0. If the value on theleft is
not equal to O then the expression on the right is not evaluated (thisis known as
short-circuit expression evaluation).

13.4.3 Bit Operators for the C Grammar

&

Bit-wise AND: The bhits of the value on the | eft and the value on the right are
ANDed.

Bit-wise OR: The bits of the value on the left and the value on the right are
ORed.

Bit-wise exclusive OR: The hits of the value on the |eft and the value on the
right are exclusively ORed.

13.4.4 Relational Operators for the C Grammar

Equal: If the value on the left is equal to the value on the right then the result is
1; otherwise theresult isO.

Not equal: If the value on theleft is not equal to the value on the right then the
result is 1; otherwise the result is 0.

Lessthan: If the value on the left is less than the value on the right then the
result is 1; otherwise the result is 0.

154 Operators for the C Grammar

Watcom Debugger Expression Handling

Lessthan or equal: If the value on the left isless than or equal to the value on
the right then the result is 1; otherwise the result is 0.

Greater than: If the value on the left is greater than the value on the right then
theresult is 1; otherwise the result is 0.

Greater than or equal: If the value on the left is greater than or equal to the
value on the right then the result is 1; otherwise the result is .

13.4.5 Arithmetic/Logical Shift Operators for the C Grammar

<<

>>

Left shift: The bits of the value on the left are shifted to the left by the amount
described by the value on the right.

Right shift: The bits of the value on the left are shifted to the right by the
amount described by the value on theright. If the object on the left is described
as unsigned, the vacated high-order bits are zeroed. If the object on theleft is
described as signed, the sign bit is propagated through the vacated high-order
bits. The debugger treats registers as unsigned items.

13.4.6 Binary Arithmetic Operators for the C Grammar

+

%

Addition: The value on theright is added to the value on the left.

Subtraction: The value on the right is subtracted from the value on the lft.
Multiplication: The value on the left is multiplied by the value on the right.
Division: The vaue on the left is divided by the value on the right.

Modulus. The modulus of the value on the left with respect to the value on the

right is produced. The result isthe remainder when the value on the left is
divided by the value on the right.

Operators for the C Grammar 155

Expressions

13.4.7 Unary Arithmetic Operators for the C Grammar
+ Plus: Theresult isthe value on the right.
Minus: The result is the negation of the value on the right.

~ Bit-wise complement: The result is the bit-wise complement of the value on the
right.

! Logica complement: If the value on theright is equal to O then theresultis 1;
otherwiseitisO.

++ Increment: Both prefix and postfix operators are supported. If the object ison
theright, it is pre-incremented by 1 (e.g., ++x). If the object ison the left, it is
post-incremented by 1 (e.g., x++).

Decrement: Both prefix and postfix operators are supported. If the object ison
theright, it is pre-decremented by 1 (e.g., --x). If the object ison theleft, itis
post-decremented by 1 (e.g., X--).

& Address of: Theresult is the address (segment:offset) of the object on the right
(e.g., &main).
* Points: The result is the value stored at the location addressed by the value on

theright (e.g., *(ds:100), *string.loc). In the absence of typing information, a
near pointer is produced. If the operand does not have a segment specified, the
default data segment (DGROUP) is assumed.

(SS: 00FE) = FFFF
var: (SS:0100) = 0152
(SS:0102) = 1240
(SS: 0104) = EEEE
% Value at address: The result is the value stored at the location addressed by the

value on the right (e.g., %(ds:100), %string.loc). In the absence of typing
information, afar pointer is produced. If the operand does not have a segment
specified, the default data segment (DGROUP) is assumed.

(SS: 00FE) = FFFF
var: (SS:0100) = 0152
(SS:0102) = 1240
(SS: 0104) = EEEE

Note that this operator is not found in the C or C++ programming languages.

156 Operators for the C Grammar

Watcom Debugger Expression Handling

13.4.8 Special Unary Operators for the C Grammar

sizeof unary_expression

Example:
si zeof tyne
si zeof (*tyne)

sizeof (type_name)

Example:
sizeof (struct tm)

(type_name) unary_expression The type conversion operator (type name) is used to convert
an item from one type to another. The following describes the syntax of
"type_name".

type name::=type spec {["near” |"far" |"huge"]"*" }
type_spec ::=typedef_name

| "struct" structure tag

| "union" union_tag

| "enum" enum tag

| scalar_type{ scalar_type}
scalar_type::="char" |"int" |"float" | " double"

| "short" |"long" |"signed" | " unsigned"

Example:
(float) 4
(int) 3.1415926

[type_name] unary_expression Y ou can force the debugger to treat amemory reference asa
particular type of value by using atype coercion operator. A type specification
is placed inside brackets as shown above. The basic types are char (character, 8
bits), short (short integer, 16 bits), long (long integer, 32 bits), float
(single-precision floating-point, 32 bits), and double (double-precision
floating-point, 64 bits). Unless qualified by the short or long keyword, theint
type will be 16 bitsin 16-bit applications and 32 bits in 32-bit applications (386,
486 and Pentium systems). The character, short integer and long integer types
may be treated as signed or unsigned items. The default for the character typeis
unsigned. The default for the integer typesis signed.

Operators for the C Grammar 157

Expressions

Example:
[char] (default unsi gned)
[signed char]
[unsi gned char]

[int] (default is signed)
[short] (default is signed)
[short int] (default is signed)
[signed short int]

[1ong] (default is signed)
[long int] (default is signed)

[signed | ong]
[unsigned long int]
[float]

[doubl €]

Note that it is unnecessary to specify the int keyword when short or long are
specified.

Existencetest: The"?' unary operator may be used to test for the existence of a
symbol.

Example:
?id

Theresult of thisexpressionis1if "id" isasymbol known to the debugger and 0
otherwise. If the symbol does not exist in the current scope then it must be
qualified with its module name. Automatic symbols exist only in the current
function.

13.4.9 Binary Address Operator for the C Grammar

Memory locations can be referenced by using the binary ":" operator and a
combination of constants, register names, and symbol names. In the Intel 80x86
architecture, amemory reference requires a segment and offset specification. A
memory reference using the ":" operator takes the following form:

segment: of fset
The elements segment and offset can be expressions.
Example:

(ES): (DI +100)
(SS): (SP-20)

158 Operators for the C Grammar

Watcom Debugger Expression Handling

13.4.10 Primary Expression Operators for the C Grammar

11 Elements of an array can be identified using subscript expressions. Consider the
following 3-dimensional array defined in the "C" language.

Example:
char *ProcessorType[2][4][2] =
{ { { "Intel 8086", "I ntel 8088" 1},
{ "Intel 80186", "Intel 80188" },
{ "Intel 80286", "unknown" },
{ "Intel 80386", "unknown" } },
{ { "NEC V30", "NEC V20" },
{ "unknown", "unknown" 1},
{ "unknown", "unknown" 1},
{ "unknown", "unknown" } } };

This array can be viewed as two layers of rectangular matrices of 4 rows by 2
columns. The array elements are all pointers to string values.

By using a subscript expression, specific dices of an array can be displayed. To
see only the values of the first layer, the following expression can be issued.

Example:
processortype[0]

To see only the first row of thefirst layer, the following expression can be
issued.

Example:
processortype[0][0]

To see the second row of thefirst layer, the following command can be issued.

Example:
processortype[0] [1]

To see the value of a specific entry in amatrix, all the indices can be specified.

Example:
processortype[0][0][0]
processortype[0][0][1]
processortype[0][1][0]

Operators for the C Grammar 159

Expressions

0 The function call operators appear to the right of a symbol name and identify a
function call in an expression. The parentheses can contain arguments.

Example:
Cl ear Screen()
PosCursor(10, 20)
Line(15, 1, 30, '-', '+, '-")

The"." operator indicates field selection in a structure. In the following
example, t yme2 isastructureand t m_year isafield in the structure.

Example:
tyme2. t myear

-> The"->" operator indicates field selection when using a pointer to a structure.
In the following example, t yne isthe pointer and t m_year isafield in the
structure to which it points.

Example:
tyme->t myear

13.5 Operators for the C++ Grammar

Debugger support for the C++ grammar includes all of the C operators described in the
previous section entitled "Operators for the C Grammar" on page 152. In addition to this, the
debugger supports a variety of C++ operators which are described in the C++ Programming
Language manual.

Perhaps the best way to illustrate the additional capabilities of the debugger’ s support for the
C++ grammar is by way of an example. The following C++ program encompasses the
features of C++ that we will use in our debugging example.

Example:

160 Operators for the C++ Grammar

Watcom Debugger Expression Handling

/1 DBG_EXAM C. C++ debuggi ng exanpl e program

struct BASE {
int a;
BASE() : a(0) {}
~BASE() {}
BASE & operator =(BASE const &s)
{
a = s.a;
return *this;

virtual void foo()

struct DERI VED : BASE ({
int b;
DERI VED() : b(0) {}
~DERI VED() {}
DERI VED & operator =(DERI VED const &s)

{

a S. a;
b s. b;
return *this;

o

e

virtual void foo()
{

2;

3;

a
b

virtual void foo(int)

{
}
i
voi d use(BASE *p)

p->foo();

Operators for the C++ Grammar 161

Expressions

void main()

DERI VED X;
DERI VED y;

use(&);

y =X
}

Compile and link this program so that the most comprehensive debugging information is
included in the executablefile.

13.5.1 Ambiguity Resolution in the C++ Grammar

Continuing with the example of the previous section, we can step into the call to use and up
tothe p- >f oo() function cal. Try to set abreakpoint at foo.

Y ou will be presented with awindow containing alist of "foo" functions to choose from since
thereference to f 00 at thispoint is ambiguous. Select the one in which you are interested.

Y ou may also have observed that, in thisinstance, p isreally apointer to the variable x which
isaDERI VEDtype. Todisplay al thefieldsof x, you can type cast it asfollows.

Example:
*(DERI VED *)p

13.5.2 The "this" Operator for the C++ Grammar

Continuing with the example of the previous sections, we can step into the call to f - >f 0o()
and up to the b=3 statement. Y ou can use the "this" operator asillustrated in the following
example.

Example:

t hi s->a
*this

162 Operators for the C++ Grammar

Watcom Debugger Expression Handling

13.5.3 "operator" Functions in the C++ Grammar

Continuing with the example of the previous sections, we can set breakpoints at C++
operators using expressions similar to the following:

Example:
operator =

DERI VED & operator =(DERI VED const &s)
{

a = s.a;
b = s.b;
return *this;

13.5.4 Scope Operator "::" for the C++ Grammar

We can use the scope operator "::" to identify what it is that we wish to examine. Continuing
with the example of the previous sections, we can enter an address like:

base: : foo

In some cases, this also helps to resolve any ambiguity. The example above permits us to set
abreakpoint at the source code for the function f oo in the class BASE.

virtual void foo()

Here are some more interesting examples:

derived: : foo
derived: : operator =

Thefirst of these two examples contains an ambiguous reference so a prompt window is
displayed to resolve the ambiguity.

Operators for the C++ Grammar 163

Expressions

13.5.5 Constructor/Destructor Functions in the C++ Grammar

We can also examine the constructor/destructor functions of an object or class. Continuing
with the example of the previous sections, we can enter expressions like:

Example:
base: : base
base: : ~base

The examples above permit us to reference the source code for the constructor and destructor
functionsin the class BASE.

13.6 Operators for the FORTRAN Grammar

The debugger supports most FORTRAN 77 operators and includes an additional set of
operators for convenience. The additional operators are patterned after those availablein the
C programming language.

The grammar that the debugger supportsis close to that of the FORTRAN 77 language but
there are afew instances where space characters must be used to clear up any ambiguities.
For example, the expression

1.eq.x

will result in an error since the debugger will form a floating-point constant from the "1."
leaving the string "eq.x". If we introduce a space character after the 1" then we clear up the
ambiguity.

1 .eq.x
Unlike FORTRAN, the parser in the debugger treats spaces as significant characters. Thus
spaces must not be introduced in the middle of symbol names, constants, multi-character

operatorslike .EQ. or //, etc.

Operators are presented in order of precedence, from lowest to highest. Operators on the
same line have the same priority.

164 Operators for the FORTRAN Grammar

Watcom Debugger Expression Handling

Assi gnnment QOperators

= 4= -= *= [= OF &= | =
Logi cal Operators
. EQV. . NEQV.
.OR
. AND.
NOT

Bit Operators
I

AN

&
Rel ati onal QOperators
.EQ .NE. .LT. .LE .GI.
Shift and Concat enation Operators
<< >> [/
Arithnetic Operators
+ -
* %
** (unsupport ed)
Unary Qperators
+

~ ++ S & * %
[type_nane] unary_expr
?

Bi nar.y Addr ess Oper at or

subscripting, substringing, or function call
field selection

field selection using a pointer

Lowest Priority

N= <K= >>=

. GE

H ghest Priority

Parentheses can be used to order the evaluation of an expression.

In addition to the operators listed above, a number of primary expression operators are
supported. These operators are used in identifying the object to be operated upon.

The following built-in functions may be used to convert the specified argument to a particular

Operators for the FORTRAN Grammar 165

Expressions

I NT() conversion to integer

REAL() conversion to real

DBLE() conversion to doubl e-precision
CVPLX() conversion to conpl ex

DCVPLX() conversion to doubl e-precision conpl ex

The following sections describe the operators presented above.

13.6.1 Assignment Operators for the FORTRAN Grammar

<<=

>>=

Assignment: The value on theright is assigned to the object on the lft.

Additive assignment: The object on the |eft is augmented by the value on the
right.

Subtractive assignment: The object on the left is reduced by the value on the
right.

Multiplicative assignment: The object on the left is multiplied by the value on
theright.

Division assignment: The object on the left is divided by the value on the right.

Modulus assignment: The object on the left is updated with MOD(left,right).
Theresult is the remainder when the value of the object on the left is divided by
the value on the right.

Bit-wise AND: The bitsin the object on the left are ANDed with the bits of the
value on the right.

Bit-wiseinclusive OR: The bitsin the object on the left are ORed with the bits
of the value on theright.

Bit-wise exclusive OR: The bitsin the object on the left are exclusively ORed
with the bits of the value on the right.

Left shift: The bitsin the object on the left are shifted to the left by the amount
of the value on the right.

Right shift: The bitsin the object on the left are shifted to the right by the
amount of the value on theright. If the object on the left is described as
unsigned, the vacated high-order bits are zeroed. If the object on the leftis

166 Operators for the FORTRAN Grammar

Watcom Debugger Expression Handling

described as signed, the sign bit is propagated through the vacated high-order
bits. The debugger treats registers as unsigned items.

13.6.2 Logical Operators for the FORTRAN Grammar

EQV.

NEQV.

.OR.

AND.

.NOT.

Logical equivalence: Thelogica equivalence of the value on the left and the
value on the right is produced.

Logical non-equivalence: Thelogica non-equivalence of the value on the left
and the value on theright is produced.

Logical inclusive disiunction: Thelogical OR of the value on the left and the
value on the right is produced.

Logica conjunction: The logical AND of the value on the left and the value on
theright is produced.

Logical negation: Thelogical complement of the value on the right is produced.

13.6.3 Bit Operators for the FORTRAN Grammar

Bit-wise OR: The bits of the value on the left and the value on the right are
ORed.

Bit-wise exclusive OR: The bits of the value on the left and the value on the
right are exclusively ORed.

Bit-wise AND: The bits of the value on the | eft and the value on the right are
ANDed.

13.6.4 Relational Operators for the FORTRAN Grammar

EQ.

.NE.

LT.

Equal: If the value on the left is equal to the value on the right then the result is
1; otherwise theresult isO.

Not equal: If the value on theleft is not equal to the value on the right then the
result is 1; otherwise the result is 0.

Lessthan: If the value on the left is less than the value on the right then the
result is 1; otherwise the result is 0.

Operators for the FORTRAN Grammar 167

Expressions

LE.

.GT.

.GE.

Lessthan or equal: If the value on the left isless than or equal to the value on
the right then the result is 1; otherwise the result is 0.

Greater than: If the value on the left is greater than the value on the right then
theresult is 1; otherwise the result is 0.

Greater than or equal: If the value on the left is greater than or equal to the
value on the right then the result is 1; otherwise the result is .

13.6.5 Arithmetic/Logical Shift Operators for the FORTRAN Grammar

<<

>>

Left shift: The bits of the value on the left are shifted to the left by the amount
described by the value on the right.

Right shift: The bits of the value on the left are shifted to the right by the
amount described by the value on theright. If the object on the left is described
as unsigned, the vacated high-order bits are zeroed. If the object on theleft is
described as signed, the sign bit is propagated through the vacated high-order
bits. The debugger treats registers as unsigned items.

13.6.6 Concatenation Operator for the FORTRAN Grammar

)

String concatenation: The concatenation of the character string value on the left
and right is formed.

13.6.7 Binary Arithmetic Operators for the FORTRAN Grammar

+

%

* %

Addition: The value on theright is added to the value on the left.

Subtraction: The value on the right is subtracted from the value on the | eft.
Multiplication: The value on the left is multiplied by the value on the right.
Division: The vaue on the left is divided by the value on theright.

Modulus. The modulus of the value on the left with respect to the value on the
right is produced. The result isthe remainder when the value on the left is

divided by the value on the right.

Exponentiation: This operation is not supported by the debugger.

168 Operators for the FORTRAN Grammar

Watcom Debugger Expression Handling

13.6.8 Unary Arithmetic Operators for the FORTRAN Grammar

+

++

%

Plus: Theresult isthe value on the right.
Minus: The result is the negation of the value on the right.

Bit-wise complement: The result is the bit-wise complement of the value on the
right.

Increment: Both prefix and postfix operators are supported. If the objectison
theright, it is pre-incremented by 1 (e.g., ++x). If the object ison theleft, it is
post-incremented by 1 (e.g., X++).

Decrement: Both prefix and postfix operators are supported. If the object ison
theright, it is pre-decremented by 1 (e.g., --x). If the object ison theleft, itis
post-decremented by 1 (e.g., X--).

Address of: Theresult is the address (segment:offset) of the object on the right
(e.g., &main).

Points: Theresult isthe value stored at the location addressed by the value on
theright (e.g., *(ds:100), *string.loc). In the absence of typing information, the
value on the right istreated as a pointer into the default data segment
(DGROUP) and a near pointer is produced.

(SS: 00FE) = FFFF
var: (SS:0100) = 0152
(SS: 0102) = 1240
(SS: 0104) = EEEE

Vaue at address. The result isthe value stored at the location addressed by the
value on the right (e.g., %(ds:100), %string.loc). In the absence of typing
information, the value on the right is treated as a pointer into the default data
segment (DGROUP) and afar pointer is produced.

(SS: 00FE) = FFFF
var: (SS:0100) = 0152
(SS: 0102) = 1240
(SS: 0104) = EEEE

Note that this operator is not found in the FORTRAN 77 programming
language.

Operators for the FORTRAN Grammar 169

Expressions

13.6.9 Special Unary Operators for the FORTRAN Grammar

? Existencetest: The"?' unary operator may be used to test for the existence of a
symbol.

?id

Theresult of thisexpressionis1if "id" isasymbol known to the debugger and O
otherwise. If the symbol does not exist in the current scope then it must be
qualified with its module name. Automatic symbols exist only in the current
subprogram.

13.6.10 Binary Address Operator for the FORTRAN Grammar

Memory locations can be referenced by using the binary ":" operator and a
combination of constants, register names, and symbol names. In the Intel 80x86
architecture, amemory reference requires a segment and offset specification. A
memory reference using the ":" operator takes the following form:

segment: of fset
The elements segment and offset can be expressions.
Example:

(ES) : (DI +100)
(SS) : (SP- 20)

13.6.11 Primary Expression Operators for the FORTRAN Grammar

0 Elements of an array can be identified using subscript expressions.

The"." operator indicates field selection in astructure. This operator isuseful in
mixed language applications where part of the application is written in the C or
C++ programming language. In the following example, t ynme2 isastructure
andt m_year isafield inthe structure.

tyme2.t m_year

-> The"->" operator indicates field selection when using a pointer to a structure.
This operator is useful in mixed language applications where part of the
application iswritten in the C or C++ programming language. In the following

170 Operators for the FORTRAN Grammar

Watcom Debugger Expression Handling

example, t yne isthe pointer and t m_year isafield in the structure to which it
points.

tyme- >t m_year

Operators for the FORTRAN Grammar 171

Expressions

172 Operators for the FORTRAN Grammar

Appendices

Appendices

174

Debugger Commands
e

A. Debugger Commands

This section describes the syntax of debugger commands as well as a description of each of
the debugger commands.

A.1 Syntax Definitions

A debugger command may contain any of the following syntax elements:

» A word in angle brackets, like <anything> isadefined term. Its definition will appear
after the syntax description of the command.

* [X] indicates that "Xx" is an optional item. It may or may not be included in the
command.

* [X]y|z] indicates that on of X, y or z should be included in the command.
o [X [x [...]]] indicates that x may be repeated zero or more timesin the command.

 CApital indicates that ca,cap,capi,... are accepted short forms for the command
"capital".

* (GUI only) indicates that this command is only available in a GUI debugger.

* (character-based) indicates that this command is only available in a character mode
debugger.

* <expr> indicates an expression. These may include any of the variables, etc in the
program being debugged, and are evaluated in the current program context. See
"Watcom Debugger Expression Handling" on page 141.

* <integer> is an integer constant

* <intexpr> is an an expression which evaluates to an integral value. See "Watcom
Debugger Expression Handling" on page 141.

Syntax Definitions 175

Appendices

» <command> is any debugger command or group of debugger commands.

Y ou can group debugger commands with braces and separate them with semi-colons.
The resulting compound command may be considered as an atomic command.

{ <command>; <comand>; <conmand>}

* <address> is any expression which evaluates to an address. See "Watcom Debugger
Expression Handling" on page 141.

* <string> is a string of text, optionally enclosed in braces. For example,

this_is_a_string
{so is this}

» <wndname> is the name of awindow. Valid window names (with acceptable short
formsindicated in capitals) are;

» ASsembly
* ALl

* BReak

» Cdls

» Watch

* Flle

* FPu

* FUnctions
* FILEScope
* LOCals
*LOG

* MEmory

e MOdules

* Register

e SOurce

» STack

» Thread

* 10

* Globals

* Variable

* Blnary

* IMage

» GLobalfunctions
» Accelerators
* TMPFile

* REPlay

e CUrrent

176 Syntax Definitions

Debugger Commands

* <file> represents any valid operating system file name. For example,

c:\ aut oexec. bat

* <path> represents any valid operating system directory path. For example,

c:\diri\dir2

A.2 Command Summary

A summary of each command follows.

A.2.1 Accelerate

This command behaves as if amenu item from the main menu was sel ected:

Accel erate main <menu> {<nenu_string>}

This command behaves as if the named menu item in the floating pop-up menu for the current
window was selected:

Accel erate {<nenu_string>}
<menu> the string appearing on the main menu bar (File, Run, Break, Code, etc)

<menu_string>
is enough of the text appearing in a menu to uniquely identify it.

For example:

accelerate main run {until return}

behaves asif "Until return” is selected from the run menu

accel erate {Hone}

behaves as if "home" were picked from the floating pop-up menu of the current window.

Command Summary 177

Appendices

A.2.2 Break

This command prints alist of all breakpointsinto the log window:

Br eak
This command sets a break point. See the section entitled "Breakpoints' on page 85 for
details about breakpoint operation.

Break [|/Set|/Byte|/Wrd|/Dwrd|/Mdify]
<address> [{<do_command>} [{ <condition> } [<countdown>]]]

This command deactivates a breakpoint:

Br eak/ Deacti vat e <br ki d>

This command enables a breakpoint:

Br eak/ Acti vat e <brki d>

This command clears a breakpoint:

Br eak/ d ear <brki d>

This command toggles a breakpoint through the active/inactive/del eted states:

Br eak/ Toggl e <br ki d>

This command turns on the resume option in the breakpoint:

Br eak/ Resune <br ki d>

This command turns off the resume option in the breakpoint:

Br eak/ UnResune <br ki d>
The Break options are:

/Set (default)
the breakpoint triggers when <address> is executed

/Byte the breakpoint triggers when the byte at <address> is modified

/Word the breakpoint triggers when the word at <address> is modified

/DWord the breakpoint triggers when the double word at <address> is modified

/Modify the breakpoint triggers when integer at <address> is modified

<condition> an expression that must be true (non-zero value) before the breakpoint stops
program execution

178 Command Summary

Debugger Commands

<countdown>
an integer. The breakpoint will not stop program execution until <countdown>
is decremented to zero.

Note: If you specify both <condition> and <countdown>, <countdown>
decrements only when <condition> eval uates to true.
<do_command>
acommand that is executed each time the breakpoint stops program execution
<brkid> option can be three possible values:
<address> Perform the operation on breakpoint with the given address.
* Perform the operation on all breakpoints.

#i<integer> Names abreakpoint by itsindex. Thisindex can be discovered on
thetitle line of the Breakpoint dialog.

Some exampl es of the break command and a description follow:

This command sets a breakpoint at "foo" the 20th time that i equals 10. When this occurs’do
j7 isexecuted:

Break /Set foo {do j7} {i10} 20
This command clears the breakpoint at foo:

Break /Cl ear foo

This command activates breakpoint #1:

Break /Activate #1

This command deactivates all breakpoints:

Break /Deactivate *

A.2.3 Call

Use the Call command to call aroutine. The Call command options are:

Call [/Far|/Interrupt]|/Near]
<addr ess>
[([<parnme[, <parme[...]]])] [/]<printlist>]

This command calls the routine at <address> with parameters.

Command Summary 179

Appendices

[Far Use afar cal instruction.
/Near Use anear call instruction.
/Interrupt Call theroutine asif it were an interrupt handler.
<parm> is [/<location>] <expr>
<location> is[/|[<regset>]
/ means to put the parm on the stack.
/<regset> meansto put the parm into the named registers.

<regset> isaregister aggregate. See "Watcom Debugger Expression Handling"
on page 141.

<printlist> Seethe print command for details.

Some examples of the Call command follow: This command calls the function foo:

call foo

This command calls the function bar passing the parameters 1, 2, and 3:

call bar(1,2,3)
This command calls foo putting 1 on the stack, 2 in AX and 3in CX:BX printing out the value
of AX and DX in decimal and hexadecimal respectively on return:

call /near foo(// 1, /ax 2, /[cx bx] 3) {% %} ax, dx
The Call command only uses very basic symbolic information - it's designed that way so that
it can work even when no symbolic information is available. This has a number of
implications. Thefirst isthat the debugger pays no attention to any information on where
parameters are stored. For example, in 32-bit applications, unless explictly instructed

otherwise, thefirst parmis placed in EAX, the second in EDX, and so on (as defined by the
"set call" command). That means that you have to do something like:

call foo(// &a, Il 3)
to get things on to the stack. Thisleadsto a second, very important consideration.
The debugger has no idea of the memory model that the program is compiled in (recall that

the 32-bit compiler does support large memory models and far pointers, even if we don’t
supply versions of the libraries for it). That means that the debugger has no idea on whether

180 Command Summary

Debugger Commands

the address of a symbol should be far or near. It always assumes far, since that never loses
information. A far pointer would be truncated to a near pointer when moved into a 32-bit
register like EAX but not so when pushed onto the stack. Inthiscase, // &aand// 3
cause 48-bit far pointers to be pushed onto the stack (they are actually pushed as 64 bits for
alignment reasons). Thus the pointer to b isin the wrong place for the routine to access it
(assuming it is expecting near pointers) and thiswill likely cause atask exception. To avoid
this problem and properly pass arguments to the routine, you need to do the following:

call foo(// (void near *)&, // (void near *)3)
This forces the debugger to push near pointers onto the stack.

Similar considerations apply for the 16-bit case.

A.2.4 CAPture

Use the Capture command to execute a command and put the resulting program output into a
window. The format of the command follows:

CAPt ur e <command>

For example, this command calls aroutine, foo, and puts its output into a debugger window.

capture call foo

A.2.5 COnfigfile

Configfile

Used by the debugger to save and restore the configuration. When "configfile" appearsin a
command file, it identifies that file as the default configuration file. The debugger will
overwrite the command file when autosaving the current configuration. Also, the name of this
fileisdisplayed in the filename field when the " Save Setup” dialog initially appears.

If more than one file is encountered containing the "configfile" command, the last one seenis
used to establish the configuration file name.

A.2.6 Display

The display command allows you to open any window. The general Display command is:

Di spl ay <wndnane> [/ Open|/C ose|/New{ /M ni m ze| / MAXi m ze| / Rest or €]
[<or d>, <or d>, <or d>, <or d>]

Command Summary 181

Appendices

This command causes the debugger screen to repaint:

Di spl ay

This command displays the toolbar as either fixed (default) or floating:

Di spl ay TOol bar [/ Open] [/FLoating/ Fi xed] [<ord>]

This command closes the toolbar:

Di spl ay TQol bar [/ ose]

This command opens the status line:

Di splay Status [/ Qpen]

This command closes the status line:

Di splay Status /d ose

This command brings awindow to the front:

Di spl ay <wndnane>
The options for the Display command follow:
<ord> The height to be used for toolbar buttons.
<ord>,<ord><ord><ord>

These are the x and y coordinates of the top left corner, and the width and the
height of the window respectively. 0,0,10000,10000 is awindow covering the

entire screen.
/Open Open a new window or resize an existing one.
/New Open a new window regardless of an existing one.
/Close Close the window.

/MInimize Iconize the window.
IMAximize Make the window full screen size.
/REstore Restore awindow from a minimize or maximize.

Some exampl es of the display command follow: This command opens a register window in
the top left quarter of the screen:

182 Command Summary

Debugger Commands

di spl ay register /open 0, 0,5000, 5000

This command minimizes the source window if it is open:

di spl ay source /mininmze

A.2.7 DO (or/)

Use the DO command to evaluate an arbitrary C/C++ or FORTRAN expression. The format
of thecommand is:

DO <expr >

For example:

DOi = 10

A.2.8 ERror

Use the Error command to display a string as an error message. The format of the command
is:

ERror <string>

For example:

error {An error has been detected}

A.2.9 Examine

Use the Examine command to examine memory at a specific address.

Exam ne [/ <type>] [<address>] [,<follow> [,<len>]]

where "<type>" is one of

Command Summary 183

Appendices

Byt e
Wor d
Dwor d

Qnord

Char

Short

Long

__int64

Unsi gned_Char
Unsi gned_Short
Unsi gned_Long
Unsi gned___i nt 64
0: 16 _Poi nt er
16: 16 _Poi nt er
0: 32_Poi nt er
16: 32_Poi nter
Fl oat

Doubl e

Ext ended_Fl oat

To show an assembly window at a specific address:

Exam ne / Assenbly [<address>]

To show a source window at a specific address

Exam ne / Source [<address>]

To add an address to the I/O window as a byte, word, or dword:

Exam ne [/1 OByte| /I OMrd| /| ODword] [<address>]
The options for the Examine command follow:

[<type> where "<type>" isone of Byt e, Word, Dword, Qaord, Char, Short,
Long, __i nt64, Unsi gned_Char, Unsi gned_Short,
Unsi gned_Long, Unsigned___i nt64, 0:16_Poi nter,
16: 16 _Poi nter, 0:32_Pointer, 16: 32_Poi nter, Fl oat,
Doubl e, or Ext ended_Fl oat. Settheinitia display type of the memory
window.

/10Byte /OWord /I ODword
Set the initial display type of the linein the I/O window.

<address> the addressto examine.

<follow> an expression which will be used if the memory window’ s Repesat function is
chosen.

184 Command Summary

Debugger Commands

<len> an integer expression indicating the length of memory to examine.
For example, this command opens a memory window positioned at the address of "foo". The
initial display type will be 2 byte words. If the Repeat menu item is used, it will follow a near

pointer 4 bytes past the beginning of the window *(.+$). The window will display 16 bytes of
dataat atime:

exam ne /word foo, *(.+4), 16

A.2.10 Flip

Use the Flip command to configure screen flipping. See the section entitled "The Options
Dialog" on page 36 for details

Flip ON
Flip OFf

A.2.11 FOnt

Use the Font command to set the font for the specified window. The command is:

FOnt <wndnane> <fontinfo>
<wndname> the name of the affected window

<fontinfo> operating system specific font data.

A2.12Go

Use the Go command to start or continue program execution. Execution then resumes at the
specified address or at the location defined by the current contents of the CS:1P or CS:EIP
register pair. The format of the Go command is:

Go [/Until] [/Keep] [/Noflip] [[<start>]<stop>]
The options are;
/Until skips breakpoints until the specified stop addressis reached.

/Keep allows you to keep a previous temporary breakpoint. If you keep the previous
breakpoint you cannot create a new one.

Command Summary 185

Appendices

/Noflip keeps the debugger from flipping to the application’s screen.
<start> the <address> at which to start execution (optional).

<stop> the <address> at which to stop execution.

Some exampl es of the Go command are:

This command will resume execution until function "foo" is executed without flipping to the
application screen:

go /noflip foo

This command starts execution at "foo" and runs until "bar" is executed.

go foo, bar

A.2.13 Help

Bring up the help screen:

Hel p

A.2.14 HOok

Use the Hook command to execute a command when a defined event occurs. The format of
the Hook command is:

HOok <event > <command>
<event> can be any of the following:
PROGStart aprogram isloaded
PROGENd aprogram terminates
DLLStart aDLL isloaded
DLLEnd aDLL isunloaded
EXECStart program execution is beginning

EXECENnd program execution is stopped

186 Command Summary

Debugger Commands

Sourceinfo the current location being examined has debugging information

Assemblyinfo
the current location being examined has no debugging information

Modulechange
the current location being examined has changed modules

This exampl e causes the locals and source window to come to the front whenever aregion
with symbolic debugging information is entered:

hook sourceinfo {display |ocals; display source}

A2151F

Use the If command to evaluate an expression and then, depending on the results, execute a
list of commands. The format of the If command is:
I F <expr> { <command> }

[ELSEIF <expr> { <command> } [ELSEIF <expr> { <command> } [...]]]
[ELSE { <conmand> }]

If the expression resultsin anon-zero value, the list of debugger commands contained after

the IF expression are executed. Otherwise, the list of commands that appear after the ELSEIF
expression are executed.

A.2.16 INvoke (or <)

Use the Invoke command to invoke a file containing a number of debugger commands. The
format of the Invoke command is:

I N\voke <file> [<string> [<string> [...]]]
< <file> [<string> [<string> [...]]]

<file> is the name of the command file to invoke.

<string> will be passed as a parameter. These parameters may be referenced in the
command file as <1>, <2>, etc.

Command Summary 187

Appendices

A.2.17 Log (or >)

Use the Log command to send the Dialog window output to a specified file. The following
commands start logging to afile:

Log <file>
Log /Start <file>
> <file>

The following commands start appending log information to afile.

Log > <file>
>> <file>
Log / Append <file>

The following commands stop |ogging:

Log
>

A.2.18 MOdify

Use the Modify command to change memory at an address to the values specified by the list
of expressions.

Mify [/Byte|/Pointer|/Wrd|/Dword|/IOByte|/]ONrd| /| CDword]
<address>[, <expr>[...]]
The options for the modify command are:
/Byte /Pointer /Word /Dword Control the size of memory to be modified.
/1OByte /I OWord /| ODword Control the size of the I/O port to be modified.
<address> The addressto modify.

<expr> The values to be placed in memory.

This command changes the 3 bytes at location "foo" to the values 1, 2 and 3:

modi fy /byte foo 1,2,3

This command changes the 4 bytes at location "foo" to the value 12345678 hex:

nmodi fy /dword foo 0x12345678

188 Command Summary

Debugger Commands

A.2.19 NEW

Use the New command to initialize various items. The format of the New command is:

NEW [<ar gs>]

NEW / Program [[: <synfile>] <progfile> [<args>]]
NEW / Restart [<args>]

NEW / STDI n <fil e>

NEW / STDQut <fil e>

NEW / SYnbol <file> [seg [,seg [...]]

<symfile> represents afile containing the symbolic information.

<progfile> represents the executable file.

<args> represent the arguments to be passed to the program.

/Restart Reload the current application and placeit into aninitia state so that you may
begin execution again. The application may have already partially or completely
executed.

/STDIn associate the standard input file handle with a particular file or device.

/STDOut associate the standard output file handle with a particular file or device.

/Symbol load additional symbolic debugging information and specify the mapping
between the linker addresses and the actual execution addresses.

A.2.20 PAInt

Use the Paint command to define window or dialog colours. To define the colour for
windows, use the following command:

PAi nt [St at us| <wndnane>] <wndattr> <col or> ON <col or >

To define the colour for dialogs in the character-based version of the debugger, use the
following command:

PAi nt Dl al og <dl gattr> <col or> ON <col or >

The paint options are as follows:

Command Summary 189

Appendices

<wndattr> alows you to define the window attributes. Y ou can choose from the following
items:

MEnu Plain menu text (character-based)

MEnu STandout menu accelerator key (character-based)
MEnu Disabled grayed menu item (character-based)
MEnu Active menu item under the cursor (character-based)

MEnu Active STandout menu accelerator key under the cursor
(character-based)

MEnu Frame frame of the menu (character-based)

MEnu Disabled Active grayed menu item under the cursor (character-based)
Tltle Disabled a non active window’ s title

Frame Active the frame of the active window (character-based)

Frame Disabled the frame an inactive window (character-based)

ICon anicon
Plain normal text within a window
Active window text under the cursor

SElected window text being selected

STandout window text the debugger wishes to highlight

Active STandout window text the debugger wishesto highlight under the cursor
BUtton the gadgets on the left side of awindow (character-based)

<dlgattr> option allows you to define the dialog attributes. The possible options are:

190 Command Summary

Debugger Commands

<color>

Plain normal text
Frame the dialog frame
SHadow the shadow of a button
BUtton Plain normal button text
BUtton STandout button accelerator key character
BUtton Active a button which has focus
BUtton Active STandout button accelerator key character of a button with focus
Y ou can choose from the following colours:

* BLACK

* BLUe

* GREEN

« Cyan

* Red

« MAgenta

* BROwn

* White

* GREY

* GRAY

« BRIght BLUe

« BRIght GREEn

* BRIght Cyan

« BRIght Red

Command Summary 191

Appendices

* BRIght MAgenta
* Yellow

« BRIght BROWN
« BRIght White

Some exampl es of the paint command follow:

paint all plain black on white
paints plain text black on white in all w ndows.
pai nt di al og button standout bright green on yellow

A.2.21 Print (or ?)

Use the Print command to prompt for an expression and then print it to the log window. Use
this command to examine the values of variables and expressions. The Print command is:

Print [/Wndow /Progran] [<printlist>]
/Window open up awatch window containing the listed expressions.
/Program print the results to the application’s screen.
<printlist> is[<format>] [<expr>[,<expr>[...]]]
<format> isaprintf like format string. It consists of plain text intermixed with control
seguences, which will be substituted with values from the expression list. The

control sequences are:

%i The corresponding argument is printed out as a signed decimal
integer value.

%d The corresponding argument is printed out as a signed decimal
integer value.

%u The corresponding argument is printed out as an unsigned decimal
integer value.

%X The corresponding argument is printed out as an unsigned

hexadecimal integer value. Letter digits are printed in lower case
(&f).

192 Command Summary

Debugger Commands

%X

%0

%p

%cC

%s

%%

%f

%g

%G

%e

%E

%r

The corresponding argument is printed out as an unsigned
hexadecimal integer value. Letter digits are printed in upper case
(A-F).

The corresponding argument is printed out as an unsigned octal
integer value.

The corresponding argument is printed out as a pointer
(segment:offset) value in hexadecimal notation.

The corresponding argument is printed out as a single character
value.

The corresponding argument is printed out as a C/C++ string
value. The argument must point to a string of characters
terminated by a byte whose valueis zero.

To print out a percentage symbol, the "%" must be doubled up
(i.e., %%).

The corresponding argument is printed out in floating-point
representation. If the floating-point value has avery large or small
magnitude, you should use one of "g", "G", "€" or "E" formatting.

The corresponding argument is printed out in floating-point
representation. Numbers of very large or small magnitude are
printed out in scientific "E" notation (e.g., 1.54352e+16). The
exponent letter is printed in lower case.

The corresponding argument is printed out in floating-point
representation. Numbers of very large or small magnitude are
printed out in scientific "E" notation (e.g., 1.54352E+16). The
exponent letter is printed in upper case.

The corresponding argument is printed out in scientific "E"
notation (e.g., 1.23456e+02). The exponent letter is printed in
lower case.

The corresponding argument is printed out in scientific "E"
notation (e.g., 1.23456E+02). The exponent |etter is printed in
upper case.

The corresponding argument is printed out in the current default
numeric radix.

Command Summary 193

Appendices

%a The corresponding argument is printed out as a symbol reference
(symbol_name+offset) when possible; otherwise it is printed out as
apointer (segment:offset) value in hexadecimal notation.

%l The corresponding argument is printed out as a line number
reference (module_name@line_number+offset) when possible;
otherwise it is printed out as a pointer (segment:offset) valuein
hexadecimal notation.

Some exampl es of the print command follow. This command prints the value of "i":

?

This command prints "decimal =100 hex=0x64":

print {deci mal =% hex=%} 100, 100

A.2.22 Quit

Use the Quit command to |leave the debugger.

A.2.23 RECord

Use the Record command to add a command to the replay window. This command isfor
internal use only. The format of the command is:

REcor d<expr > <conmmand>

A.2.24 Register

The format of the Register command is;

Regi st er <i ntexpr>

If intexpr is negative, thisis equivalent to using the menu item Undo/Undo -<intexpr> times.
If intexpr is positive, thisis equivalent to using the menu item Undo/Redo <intexpr> times.

194 Command Summary

Debugger Commands

A.2.25 REMark (or *)

Use the Remark command to enter lines of comments. The format of the command is:

REMar k <string>

A.2.26 Set

These commands are used internally by the debugger to save and restore the configuration.
The syntax is:

Set AUt osave [ON| OFf]

Set ASsenbly [Lower| Upper] [Qutside|lnside] [Source|NCSource]

[Hexadeci mal | Deci nal]

Set Variable [Entire|Partial] [CODe| NOCODe] [| Nherit|NO Nherit]

[COWi | er | NOCOWi | er] [PRI vate| NOPRI vate] [PRO ect ed| NOPROTect ed]
[Member s| NOVenber s]

Set FUnctions [Typed| All]

Set GLobal s [Typed| Al l]

Set REG ster [Hexadeci mal | Deci mal] [Extended| Normal]

Set Fpu [Hexadeci mal | Deci mal]

Set Bell [ON OFf]

Set Call [/Far|/Interrupt|/Near] [([<location> [,<location>[...]]]) 1]
Set Dclick <expr>

Set Inplicit [ON OFf]

Set | Nput <wndnane>

Set Radi x <expr>

Set RECursion [QON OFf]

Set SEarch [CASEl gnor e| CASEREspect] [Rx| NORx] <string>

Set SCQurce [/Add] [<path> [<path>] [...]]]

Set SYnmbol [/Add|/Ignore|/Respect] [<lookspec> [<lookspec> [...]]]
Set Tab <intexpr>

Set Level [Assenbly|M xed| Source]

Set LAnguage [CPP| C| FORTRAN]

Set SUpportroutine <string>

Set MAcro <wndnane> <key> <command>

<location> seecall command.

<lookspec> [/Ignorel/Respect] <string>

A.2.27 SHow

The Show commands are used internally by the debugger to save and restore its configuration.
The syntax is:

Command Summary 195

Appendices

SHow Pai nt

SHow Di spl ay

SHow Font

SHow Set

SHow Set AUt osave
SHow Set ASsenbly
SHow Set Vari abl e
SHow Set FUncti ons
SHow Set GlLobal s
SHow Set REG ster
SHow Set Fpu

SHow Set Bel |

SHow Set Cal |

SHow Set Dcli ck
SHow Set Inplicit
SHow Set | Nput
SHow Set Radi x
SHow Set RECur si on
SHow Set SEarch
SHow Set SCurce
SHow Set SYnbol
SHow Set Tab

SHow Set Level
SHow Set LAnguage
SHow Set MAcr o
SHow Set SUpportroutine
SHow Flip

SHow Hook

A.2.28 SKip

Use the Skip command to set CS.EIP to a specific address. The format of the command is:

SKi p <address>

A.2.29 STackpos <intexpr>

The Stackpos command is the same as using Undo/Unwind. The <intexpr> allows you to
define the number of timesto undo or unwind.

A.2.30 SYstem (or)

Use the System command to spawn an operating shell to execute a given string. The format
of the system command is:

SYstem [/ Renote| / Local] <string>

196 Command Summary

Debugger Commands

/Remote the shell is started on the program side of aremote debug link.

/Local the shell is started on the debugger side of aremote debug link.

A.2.31 THread (or ~)

Use the Thread command to manipul ate the threads of execution of a multi-threaded
application under OS/2 or NetWare 386. The format of the Thread command is:

THread [/ Show / Freeze|/ Thaw| / Change] [<t hreadi d>]

/Show display the status of the current thread.
[Freeze freeze athread and make it unrunnable.
/Thaw make afrozen thread runnable.

/Change to select a specific thread.

<threadid> istheidentification number of the thread.

A.2.32 Trace

Use the Trace command to step through the execution of your program. The Trace command
is:

Trace [/ Assenbly|/M xed|/ Source] [/Into|/Next|/COver]
/Assembly trace through your assembly code on instruction at atime.

/Mixed trace execution of the application one source statement at atime, or one
instruction at a time when no source text is available.

/Source trace execution of the application one source statement at atime.

/Into continue execution to the next statement or assembly instruction. If the current
statement or instruction invokes aroutine, then the next statement or instruction
isthefirst one called in the routing.

/Next continue execution to the next statement or assembly instruction that

immediately follows the current statement or instruction in memory. If the
current statement or instruction is one that branches, be sure that the execution

Command Summary 197

Appendices

path eventually executed the statement or instruction that follows. If the
program does not executed this point, the program may execute to completion.

/Over continue execution to the next statement or assembly instruction. If the current

statement or instruction invokes a routine, then the next statement or instruction
is the one that follows the invocation of the routine.

A.2.33 Undo

The format of the Undo command is:

Undo <i nt expr>

If intexpr is positive, thisis equivalent to using the menu item Undo/Undo <intexpr> times. If
intexpr is negative, thisis equivalent to using the menu item Undo/Redo -<intexpr> times.

A.2.34 View

Use the View command to show afilein awindow. Theformat of the command is:

View [/Binary] [<file>| <nmodul e>]
/Binary show the file contentsin binary.
<file> the file to be shown.

<module> the module to be shown. The default isthe current module.

A.2.35 While

Use the While command to permit the execution of alist of commands while the specified
expression istrue. The While command is:

Wi |l e <expr> { <command> }

A.2.36 Window

This command operates on the current window. It isuseful when defining accelerators that
perform window operations.

198 Command Summary

Debugger Commands

WIndow CLose
close the window

WIndow CURSORStart
move the cursor to start of line

WIndow CURSORENd
move the cursor to end of line

WIndow CURSORDown
move the cursor down one line

WI ndow CURSORL eft
move the cursor |eft

WIndow CURSORRIght
move the cursor right

WIndow CURSORUp
move up oneline

WIndow Dump
dump the window to afile

WIndow Log
dump the window to alog window

WIindow FINDNext
find the next occurrence of the current search string

WIindow FINDPrev
find the previous occurrence of the current search string

WIndow Next
make another window the current window

WIndow PAGEDown
move the window down one page

WIndow PAGEUp
move the window up one page

WIndow POpup
show the window’ s floating pop-up menu

Command Summary 199

Appendices

WIindow SEarch
search for agiven string

WIndow SCROLLDown
scroll the window down oneline

WIndow SCROLLUp
scroll the window up oneline

WIndow SCROLLTop
scroll the window to the very top

WIndow SCROLL Bottom
scroll the window to the very bottom

WIndow TABL eft
move to the previous tabstop

WIndow TABRight
move to the next tabstop

WIndow MAXimize
maximize the window

WIndow MINimize
minimize the window

WIndow REStore
restore the window

WIindow Tlle
tile all windows

WIndow CAscade
cascade all windows

WI ndow PRevious
move to the previous window

200 Command Summary

Predefined Symbols
|

B. Predefined Symbols

The Watcom Debugger defines a number of symbols which have special meaning. Each of
the registersis designated by a special name.

eax 32-bit EAX register (32-hit mode only)
ax 16-bit AX register

al 8-hit AL register

ah 8-bit AH register

ebx 32-bit EBX register (32-bit mode only)
bx 16-bit BX register

bl 8-bit BL register

bh 8-bit BH register

€cx 32-bit ECX register (32-bit mode only)
cX 16-bit CX register

cl 8-hit CL register

ch 8-hit CH register

edx 32-bit EDX register (32-hit mode only)
dx 16-bit DX register

d 8-bit DL register

dh 8-bit DH register

eip Instruction pointer register (32-bit mode only)
ip Instruction pointer register

€S Source index register (32-bit mode only)
s Source index register

edi Destination index register (32-bit mode only)
di Destination index register

esp Stack pointer register (32-bit mode only)
sp Stack pointer register

ebp Base pointer register (32-bit mode only)
bp Base pointer register

cs Code segment register

ds Data segment register

es Extra segment register

fs Segment register (32-bit mode only)

Predefined Symbols 201

Appendices

gs
S
fl

efl

Segment register (32-bit mode only)
Stack segment register

Flags register

Flags register (32-bit mode only)

fl.flg_bit_name Individual bitsin Flags register

flg_bit_ name::="c" ["p" |"a" |"2" |"s" |"i" |"d" |"0O"

efl.flg_bit_name Individua bitsin Flags register

St0 - st7
cw

flg_bit_name::="c¢" |"p" |"a" |"Z" |"s" |"i" |"d" |"0O"
The following table lists the full name for each of the flags register bits:

fl.o, fl.0 overflow flag

fl.d, efl.d direction flag

fl.i, efl.i interrupt flag

fl.s, efl.s sign flag

fl.z, efl.z zero flag

fl.a, efl.a auxiliary carry flag
fl.p, efl.p parity flag

fl.c, efl.c carry flag

Numeric Data Processor registers (math coprocessor registers)
8087 control word (math coprocessor control word)

cw.cw_bit_name Individual bitsin the control word

CW_blt_name = n iCu | " rCu | " an | n iern" | n pmn |
n umu | n Omn | n Zrnn | n dmu | " imu

The following table lists the full name for each of the control word bits:

cw.ic infinity control
0 = projective
1=dffine

cw.rc rounding control (2 bits)

00 = round to nearest or even

01 = round down (towards negative infinity)
10 = round up (towards positive infinity)

11 = chop (truncate toward zero)

202 Predefined Symbols

Predefined Symbols

cw.pc precision control (2 bits)

00 = 24 bits
01 = reserved
10 = 53 hits
11 = 64 bits

cw.iem interrupt enable mask (8087 only)

0 = interrupts enabled
1 = interrupts disabled (masked)

cw.pm precision (inexact result) mask
cw.um underflow mask
cw.om overflow mask
cw.zm zero-divide mask
cw.dm denormalized operand mask
cw.im invalid operand mask
sw 8087 status word (math coprocessor status word)

sw.sw_hit_name Individual bitsin the status word
sw_bit_name::= "b" ["c3" |["s" |"c2" ["cl" |
n CO" | n %ll | n Sr" | n pelI | n uell |
n OeII | n ZelI | n dell | n iell

The following table lists the full name for each of the status word bits:

sw.b busy
sw.c3 condition code bit 3
sw.st stack stop pointer (3 bits)

000 = register 0 is stack top
001 = register 1 is stack top
010 = register 2 is stack top

111 = register 7 is stack top

Sw.c2 condition code bit 2
sw.cl condition code bit 1

Predefined Symbols 203

Appendices

sw.cO condition code bit 0

Sw.es error summary (287, 387 only)
sw.sf stack fault (387 only)

Ssw.pe precision (inexact result) exception
sw.ue underflow exception

sw.oe overflow exception

sw.ze zero-divide exception

sw.de denormalized operand exception
sw.ie invalid operation exception

The debugger permits the manipulation of register contents using any of the operators
described in the following chapter. By default, these predefined names are accessed just like
any other variables defined by the user or the application. Should the situation ever arise
where the application defines a variable whose name conflicts with that of one of these
debugger variables, the module specifier _dbg may be used to resolve the ambiguity. For
example, if the application defines avariable called cs then _dbg@s can be specified to
resolve the ambiguity. The"_dbg@" prefix indicates that we are referring to a debugger
defined symbol rather than an application defined symbol.

The flags register, the 8087 control word, and the 8087 status word can be accessed as a
whole or by its component status bits.

Example:
/fl.c=0
/ cw. unme0
?Sw. oe

In the above example, the "carry" flag is cleared, the 8087 underflow mask of the control
word is cleared, and the 8087 overflow exception bit of the status word is printed.

The low order bit of the expression result is used to set or clear the specified flag.

Example:
f1.c=0x03a6

In the above example, the "carry" flag is cleared since the low order bit of the result isO.

The debugger also defines some other special names.

204 Predefined Symbols

Predefined Symbols

dbg$32

dbgs$bp

dbg$code

dbg$cpu

dbgsctid

dbg$data

dbgsetid

dbg$fpu

This debugger symbol represents the mode in which the processor is running.

0 16-bit mode
1 32-bit mode

This debugger symbol represents the register pair SS:BP (16-bit mode) or
SS:EBP (32-bit mode).

Example:
? dbg$bp

This debugger symbol represents the current code location under examination.
The dot address"." is either set to dbg$code or dbg$data, depending on whether
you were last looking at code or data.

This debugger symbol represents the type of central processing unit whichisin
your personal computer system.

Intel 8088, 8086 or compatible processor
Intel 80188, 80186 or compatible processor
Intel 80286 or compatible processor

Intel 80386 or compatible processor

Intel 80486 or compatible processor

Intel Pentium processor

O~ wWwNEFO

This debugger symbol represents the identification number of the current
execution thread. Under DOS and QNX, the current thread ID isaways 1. The
current execution thread can be selected using the Thread window or the Thread
command.

This debugger symbol represents the current data location under examination.
The dot address "." is either set to dbg$code or dbg$data, depending on whether
you were last looking at code or data.

This debugger symbol represents the identification number of the thread that
was executing when the debugger was entered. Under DOS and QNX, the
executing thread 1D isalways 1.

This debugger symbol represents the type of numeric data processor (math
coprocessor) that isinstalled in your personal computer system.

Predefined Symbols 205

Appendices

.bool\n—\ol;

An 80x87 emulator isinstalled

No coprocessor isinstalled

AnIntel 8087 isinstalled

An Intel 80287 isinstalled

An Intel 80387 isinstalled

An Intel 80486 processor, supporting coprocessor instructions, is
installed

An Intel Pentium processor, supporting coprocessor instructions, is
installed

dbg$ip This debugger symbol represents the register pair CS:1P (16-bit mode) or
CS:EIP (32-bit mode).

Example:
? dbg$ip

dbg$monitor This debugger symbol represents the type of monitor adapter which isin use.

0 IBM Monochrome Adapter

1 IBM Colour Graphics Adapter (CGA)

2 IBM Enhanced Graphics Adapter (EGA)

3 IBM Video Graphics Array (VGA)

dbg$os This debugger symbol represents the operating system that is currently running

the application.

1 DOS

2 0Ss/2

3 386|DOS-Extender from Phar Lap Software, Inc.

5 NetWare 386 from Novell, Inc.

6 QNX from QNX Software Systems Ltd.

7 DOS/4GW from Tenberry Software, Inc. (included in the Watcom
C/C++32 and Watcom FORTRAN 7732 packages)

8 Windows 3.x from Microsoft Corporation

10 Windows NT or Windows 95 from Microsoft Corporation

11 AutoCAD from Autodesk, Inc.

dbg$pid (OS/2, NetWare 386, QN X, Windows NT, Windows 95 only) This debugger
symbol contains the process identification value for the program being

debugged.

dbg$psp (DOS only) This debugger symbol contains the segment vaue for the DOS
"program segment prefix” of the program being debugged.

206 Predefined Symbols

Predefined Symbols

dbg$radix

dbg$remote

dbg$sp

dbg$loaded
dbg$nil

dbg$src

This debugger symbol represents the current default numeric radix.

This debugger symbol is 1 if the "REMotefiles" option was specified and 0
otherwise.

This debugger symbol represents the register pair SS:SP (16-bit mode) or
SS.ESP (32-bit mode).

Example:
? dbg$sp

This debugger symbol is 1 if aprogram isloaded. Otherwiseg, itisO.
This debugger symboal is the null pointer value.

This debugger symbol is 1 if you are currently debugging in an area that
contains debugging information.

Predefined Symbols 207

Appendices

208 Predefined Symbols

Wiring For Remote Debugging

C. Wiring For Remote Debugging

This appendix describes both serial and parallel port cable wiring for remote debugging.

C.1 Serial Port Wiring Considerations

If you plan to use the seria port Debug Server "SERSERV", a cable must connect the serial
ports of the two computer systems. The following diagram illustrates the wiring between the
two serial ports. If your computer systems have more than one serial port, any serial port may

be used.
Task Machi ne Debugger Machi ne
Seri al Seri al
Connect or Connect or
Pin # Pin #
1 (PG <---mmmmnn- >1 (PQ
2 (TXD)<---------- >3 (RxD)
3 (RXD)<---------- >2 (TxD)
------- 4 (RTS) 4 (RTS) -------
...... > 5 (CTS) 5 (CTS) <------
------ > 6 (DSR) 6 (DSR) <------
| 7(SQ <-----e--- >7 (S9 |
o > 8 (DCD) 8 (DCD) <------ |
S 20 (DTR) 20 (DTR) ------- |

Figure 25. Serial Port Wiring Scheme
Note that the wiring is symmetrical (i.e., either end of the cable can be plugged into either

PC). Thisparticular arrangement of the wiring is sometimes called a"null modem" (since
pins 2 and 3 are crossed and no modem isinvolved).

Serial Port Wiring Considerations 209

Appendices

C.2 Parallel Port Wiring Considerations

If you plan to use the parallel port Debug Server "PARSERV" or "PARSERVW", acable
must connect the parallel ports of the two computer systems. Three cabling methods are
supported - the LapL ink cable, the Flying Dutchman cable, and WATCOM'’ s own design.
There are two advantages to using the LapLink or Flying Dutchman cable:

1. They are commercially available (you may aready own one).

2. They may work with more PC "compatibles' than WATCOM'’s cable.
WATCOM'’s cabling requires 8 bi-directional datalinesin the parallel port and
some PC "compatibles' do not support this.

The disadvantage with the LapLink and Flying Dutchman cablesis that they are slower than
WATCOM'’s cable since only 4 bits are transmitted in parallel versus 8 bitsfor WATCOM’s.
Thus WATCOM'’s cable is faster but it will have to be custom made.

The LapLink cableis available from:

Travelling Software, Inc.
18702 North Creek Parkway
Bothell, Washington,

U.S.A. 98011

Telephone: (206) 433-8088

The Flying Dutchman cable is available from:

Cyco,

Adm. Banckertweg 2a,
2315 SR Leiden,

The Netherlands.

The following diagram illustrates WATCOM' s cable wiring between the two parallel ports.

210 Parallel Port Wiring Considerations

Wiring For Remote Debugging

Task Machine Debugger Machi ne
Paral | el Connect or Paral | el Connect or
Pi n Nunber Pi n Nunber
R TR > 2
2 Kemmmmmmmea > 1
3 K- > 14
4 Qoo > 16
S AR EEE R > 15
B <-------------- > 13
7 <emmmmmmmeeeee- > 12
A e T > 10
9 K-mmmmmeee > 11
10 <-----mmmiee--- > 8
11 <-mmmmmmmmeeee > 9
12 <--emmieee- - - > 7
13 <emmmmmmeeee- > 6
14 <---------m---- > 3
15 <--ccmemmmenne- >5
16 <-------------- > 4
17 <--ccmemmmenne- > 17
18 <---emmmee- - > 18

Figure 26. WATCOM Cable Wiring Scheme

The following diagram illustrates the LapLink cable wiring between the two parallel ports.

Task Machi ne Debugger Machi ne
Paral | el Connect or Paral | el Connect or
Pi n Nunber Pi n Nunber

2 e > 15

I > 13

4 e > 12

[> 10

[> 11

10 <---------m---- 5

11 <-----mmmmea- - 6

12 <---mmmmeea o 4

13 <----mmmeea - 3

15 <-----mmmiea o 2

25 <--mmmmee o > 25

Figure 27. LapLink Cable Wiring Scheme

The following diagram illustrates the Flying Dutchman cable wiring between the two parallel
ports.

Parallel Port Wiring Considerations 211

Appendices

Task Machine Debugger Machi ne
Paral | el Connect or Paral | el Connect or
Pi n Nunber Pi n Nunber

1 - > 11

2 e > 15

3 e > 13

4 e > 12

B ceeeceeeeeeo- > 10

10 <----mmmmmm- 5

11 <----mmmmem- - 1

12 <---mmmimee oo - 4

13 <emmmmmmeeee- 3

15 <---mmmmiaaa 2

Figure 28. Flying Dutchman Cable Wiring Scheme

For the IBM PC and PS/2, the connectors are standard "male" DB-25 connectors. Note that,
inall cases, thewiring is symmetrical (i.e., either end of the cable can be plugged into either
PC).

Note: Although the wiring is different for all three cables, WATCOM'’s parallel
communications software can determine which oneisin use.

212 Parallel Port Wiring Considerations

Index

i

.wdrc 135

32-bit application debugging 129
32-bit debugging
trap file 16
386|DOS-Extender 130, 206
version 130
387
examining 101
modifying 101

8087
examining 101
modifying 101
registers 202-203

@

@@routine_name 142
@L 119

@R 119
@routine_name 142

About menu item 43
Accelerate command 177
Accelerator

for menu items 30

for pop-up menu 29

window 45
Accelerator menu item 42
Accelerator Pop-up menu

Delete 46

Modify 46

New 46

TD Keys 46

WD Keys 46
accelerators 32, 45
Action menu 29, 42, 134
Address menu item 79
All Modules menu item 49
Application menu item 42
arguments

changing 35
array

expand 72

traversing in memory 81

view dlices 72
assembly

debugging 97

examining 99

inspecting operands 99

setting break points 99

window 98

Assembly menu item 5, 40, 54, 56, 66, 79, 90

Assembly options 39
Assembly Pop-up menu
Break 99
Enter Function 99
Hex 99
Home 99
Inspect 99

213

Index

Show/Address 99
Show/Functions 99
Show/Module 99
Show/Source 99
At Cursor menu item 87
AutoCAD debugging
ACAD.ADS 131
ADI 131
ADS 131
ADStrap file 131
ADS.DBG 132
ADSTRP 131
ADSHELP.EXP 131
AutoCAD Development System 131, 206
Autodesk, Inc 206

backward execution
over call 65
over simple statement 63
Bell 36
Break
window 89
Break All menuitem 54
Break command 178
Break menu
At Cursor 87
Clear All 88
Disable All 88
Enable All 88
New 87
On Debug Message 88
On Image Load 87
Restore 88
Save 88
Toggle 87
View All 88

Break menu item 6, 52-53, 56, 67, 73, 86, 99

Break on Write menu item 78

214

Break Pop-up menu
Assembly 90
Delete 90
Disable 90
Enable 90
Modify 89
New 89
Source 90
breakpoint
at cursor position 87
changing 89
clearing 87
clearing all 88
condition 85, 91
countdown 85, 92
counting 92
creating new 89
defined 85
deleting 90, 93
disabling 87, 90
disabling all 88
displaying 88
enabling 87, 90
enabling all 88
executing debugger commands 92
finding assembly code 90
finding source code 90
in assembly code 99
on debug message 88
on execute 85, 91
onimageload 87
onwrite 52, 73, 78, 85, 91
restoring 88
saving 88
setting 87
setting in caller 67
setting simple 86
specifying address 91
state 86
status 92
toggling 87
up call stack 67
window 89
breakpoints 4

Index

buttons 5, 28
Byte menu item 102

cable
Flying Dutchman 210
LapLink 210
WATCOM
WATCOM’sown 210
Cal command 179
calls
displaying stack 66
unwinding stack 4, 31, 33, 64, 67
window 66
Cadls menu item 40
Calls Pop-up menu
Break 67
Goto 67
Unwind 67
CAPture command 181
case insensitive searching 37
changing memory 41
char 157
CHecksize option 21
Class/Show Functions menu item 75
Class/Show Generated menu item 75
Class/Show Inherited menu item 75
Class/Show Private menu item 75
Class/Show Protected menu item 75
Class/Show Static menu item 75
Clear All menu item 54, 88
code
skipping 62
Code menu 40
Assembly 40
Calls 40
Functions 40
Images 40
Modules 40

Replay 40

Source 40

Threads 40
CodeView keyboard emulation 32
Color option 19
Colour option 19
COlumns option 17, 22
command

Accelerate 177

Break 178

Call 179

CAPture 181

COnfigfile 181

Display 181

DO (or/) 183

ERror 183

Examine 183

Flip 185

FOnt 185

Go 185

Help 186

HOok 186

IF 187

INvoke (or <) 187

Log (or >) 188

MOdify 188

NEW 189

PAInt 189

Print (or ?) 192

Quit 194

RECord 194

Register 194

REMark (or *) 195

Set 195

SHow 195

SKip 196

STackpos <intexpr> 196

summary 177

syntax 175

SYstem (or!) 196

THread (or ~) 197

Trace 197

Undo 198

View 198

215

Index

While 198

Window 198
Command menu item 35
common menu items 5
CoOnfigfile command 181
configuration

automatic saving of 36

saving 36
Console option 22
Contents menu item 43
context sensitivity 4
control-key shortcuts 29
Coprocessor

examining 101

modifying 101
CPU Register

window 97

Cursor Follow menu item 78
CWD, environment variable 135

Cyco 210

Datamenu 41
File Variables 41
FPU Registers 41
Globals 41
I/0 Ports 41
Locals 41
Log 41
Memory at 41
MMX Registers 41
Registers 41
Stack 41
Watches 41
_dbg 204
_dbg@ 204
DBGLIB.REX 130
debug compiler options 9
debug kernel 105

216

debug linker options 10
debug registers
disabling 135
using 135
Debug Startup menu item 62
debugging
32-bit DOS applications 129
at assembly level 97
DLLs 57
mouse events 17
Novell NLM 132
postmortem dump under QNX 136
preparing application for 9
remote 105
windows applications 133
debugging an OS/2 exception handler 16
debugging DLLs 134
debugging information 58
debugging under QNX 135
Delete menu item 5, 46, 74, 90, 101
Delete Symbols menu item 58
dialogs
general description 31
Dlp option 19
Disable All menu item 88
Disable menu item 90
display
changing columns 17
changing lines 16, 19
Display command 181
DLL
debugging 57, 134
showing list of 57
DO (or /) command 183
DOS extenders
386|DOS-Extender 130, 206
debugging 129
DOS/AGW 130, 206
trap option 16
DOS/AGW 130, 206
version 130
DOSAG.EXE 130
DOSAGW.EXE 130
double 157

Index

DOwnload option 18
dumper 136

dumper command 136
DWord menu item 102
DY namic option 17

Edit menuitem 72, 74
EGA lines 19
Ega43 option 19
Enable All menu item 88
Enable menuitem 90
Enter Function menu item 52, 99
environment variables
CWD 135
HOME 138
PATH 17-18, 107, 112, 114-115, 130
WD 23
WD _PATH 135, 138
ERror command 183
ESP 41
Examine 141
Examine command 183
exception handler
0S/2 16
Execute to menu item 61
Exit menuitem 35
expression
evaluate 72
expressions
aggregate 151
C operators 152
C++ operators 160
character constant 148-149
coercing types 151, 157
complex constant 148
control word register 150
current module 142
current routine 142

_dbg module 151
_dbg@cs 151
evaluating 52
flags 150
flags register 150
floating point registers 150
FORTRAN operators 164
function 142
handling of 141
image@module@routine_name 142
instruction pointer 150
integer constant 146
line numbers 145
memory references 149
module 142
module@routine_name 142
offset 149
pre-defined variables 150
procedure 142
real constant 147
referencing memory 149
register aggregate 151
registers 150
routine 142
rules 141
segment 149
segment registers 150
status word register 150
symbol name 142
type enforcement 151, 157
watching 52
Extended menu item 98
extensions
.TRP 16

Far Follow menu item 78
Fastswap option 22
features 3

217

Index

FieldOnTop menu item 74

file
viewing 53 G
window 53
Filemenu 35
Command 35 global variables
Exit 35 displaying 55
Load Setup 35 showing list 55
Opgn 35 Globals
Options 35 window 55
Save Setup 35 Globals menuitem 6, 41, 58
Source Path 35 Globals options 40
System 35 Globals Pop-up menu
VI.eW 35 . Raw Memory 55
Window Options 35 Typed Symbols 55
File options 39 Watch 55
F|IeYar|abI&s Go command 185
window 72

_ : _ Go menu item 61
F!IeVar|ab!es menu item 41 Goto menu item 66-67
Fi _nd menu item 49, 52 graphics applications
Flip command 185 debugging 133
float 157

Flying Dutchman cable 210
FOnt command 185

FPU H
window 101
FPU Pop-up menu
Hex 101
Modify 101 Help command 186
FPU Registers menu item 41 Help menu 43
Freeze menu item 68 About 43
Functions Contents 43
inspecting 52 OnHelp 43
showing list of 52, 56 Search 43
window 56 Hex menuitem 98-99, 101-102
Functions menu item 5, 40, 54, 58 HOME environment variable 138
Functions options 40 Home menu item 52, 64, 79, 99
Functions Pop-up menu HOok command 186
Assembly 56
Break 56
Source 56

Typed Symbols 57

218

Index

!

/0
window 100
1/0 Pop-up menu
Delete 101
Modify 101
New 101
Read 101
Type 101
Write 101
1/O ports
reading 100
writing 100
I/O Ports menu item 41
IF command 187
Images
showing list of 57
window 57
Images menu item 40
Images Pop-up menu
Delete Symbols 58
Functions 58
Globals 58
Modules 58
New Symbols 58
infinite loop
interrupting 123
Inspect menu item 5, 52, 72-73, 98-99, 102
instruction pointer
repositioning 62
int 157-158
Internet 119
Internet Protocol
remote debugging 117
interrupting a running program 123
INvoke (or <) command 187
invokefiles 36
Invoke option 17
IPaddress 118

keep 185

keyboard equivaents 32, 45
for menu items 30
for pop-up menu 29

LapLink cable 210
Left menuitem 79
LInesoption 16
linked lists
following in memory 80
Load Setup menu item 35
local file specifier prefix
@L 119
Local variables 41
LOcdlinfo option 17
Locals
window 72
Locals menuitem 41
locating source code 11
Log
window 44
Log (or >) command 188
Log menu item 41
long 157-158
loops
running to completion 61

219

Index

Type/Long 79
Type/Qword 79

M Type/Short 79
Type/lUnsigned __int64 80
Type/Unsigned Char 80
Type/Unsigned Long 80
Type/Unsigned Short 80

Match menu item 49

memory
break on write 78 Type/Word 79
changing 41 menu
display 77 accelerator 29
displaying 41 acc&_elerators 30
examine array 78 Action 29
examine new address 79 at-key shortcuts 30
follow pointers 78 Assembly 5
modify 77-78 Break 6
set display type 79 control-key shortcuts 29
window 77 Deletg 5

Memory at... menu item 41 Functions 5

Memory Pop-up menu Globals 6
Address 79 Inspect 5 _
Assembly 79 keyboard equivalents 30
Break on Write 78 Modify 5
Cursor Follow 78 New 5
Far Follow 78 shortcuts 29-30
Home 79 Show 6
Left 79 Source 5
Modify 78 Type 6
Near Follow 78 Watch 5
Previous 78 menus 30
Repeat 78 Microsoft Corp 206
Right 79 MMX N
Segment Follow 78 exarT_Hn_lng 102
Type/0:16 Pointer 80 modifying 102
Type/0:32 Pointer 80 window 102
Type/16:16 Pointer 80 MMX Pop-up menu
Type/16:32 Pointer 80 Byte 102
Typel_int64 79 DWord 102
Type/Byte 79 Hex 102
Type/Char 79 Inspt_act 102
Type/Double 80 l\/_lodn‘y 102
Type/Dword 79 Signed 102
Type/Extended Float 80 Word 102 _
Type/Float 80 MMX Registers menu item 41

Modify 141

220

Index

MOdify command 188
Modify menuitem 5, 46, 78, 89, 98, 101-102
Modify... menuitem 73
modules
showing list of 53
window 53
Modules menu item 40, 58
Modules options 40
M odules Pop-up menu
Assembly 54
Break All 54
Clear All 54
Functions 54
Show All 54
Source 54
Monochrome option 19
mouse
sharing 17
mouse events
debugging 17
Multi-media extension registers
examining 102
modifying 102

name completion 61, 91
Named Pipes

remote debugging 115
Near Follow menu item 78
NetWare 386 206
NEW command 189
new features 3
New menu item 5, 46, 72, 74, 87, 89, 100-101,

141

New Symbols menu item 58
Next menu item 42, 49
Next Sequential menu item 61
NLM

debugging Novell 132

showing list of 57
NOCHarremap option 21
NOExports option 17
noflip 186
NOFpu option 19
NOGraphicsmouse option 21
NOInvoke option 17
NOMouse option 17
NOSymbols option 19
Novell 206
Novell NLM

debugging 132
Novell SPX remote debugging 110
null modem wiring 209

On Debug Message menu item 88
On Help menuitem 43
On Image Load... menu item 87
ontop 74
Once argument 110
Open menu item 35
option

Bell 36
options

Assembly window 39

CHecksize 21

Color 19

Colour 19

COlumns 17, 22

Console 22

default 23

dialog 36

Dlp 19

DOwnload 18

DY namic 17

Ega43 19

Fastswap 22

File window 39

221

Index

Functions window 40
Globalswindow 40
Invoke 17
Lines 16
LOcdinfo 17
Modules window 40
Monochrome 19
NOCHarremap 21
NOExports 17
NOFpu 19
NOGraphicsmouse 21
NOInvoke 17
NOMouse 17
NOSymbols 19
Overwrite 19
Page 20
REMotefiles 18
setting 35
Swap 20
TRap 16
Two 20
Variableswindow 39
Vgab0 19
Watches window 39
XConfig 22

Options menu item 35

Options/Whole Expression menu item 76

0s/2

remote debugging 116
0S/2 exception handler 16
OutputDebugString 88
overview 3
Overwrite option 19

Page option 20
PAint command 189
parallel port

wiring 210

222

parallel port remote debugging 111
parameters
changing 35

PATH environment variable 17-18, 112, 114-115,

130
PATH, environment variable 107
PEDHELP.EXP 130
Phar Lap Software, Inc 130, 206
RUN386.EXE 130
TNT.EXE 130
platforms supported 3
PLS.TRP 130
PLSHELP.EXP 130
pmd.trp 136
pointer
display asarray 76
display asstring 76
display value 76
follow 73
follow in memory 78
show asarray 73
show code at 74
show memory at 74
postmortem dump
QNX 136
predefined symbol
dbg$32 205
dbg$bp 205
dbg$code 205
dbg$cpu 205
dbgs$ctid 205
dbg$data 205
dbg$etid 205
dbg$fpu 205
dbg$ip 206
dbg$loaded 207
dbg$monitor 206
dbg$nil 207
dbg$os 206
dbg$pid 206
dbg$psp 206
dbg$radix 206
dbg$remote 207
dbg$sp 207

Index

dbg$src 207
Previous menu item 49, 78
Print (or ?) command 192
program
arguments 35
interrupting 123
preparing for debugging 9
restarting 35, 62

running to specified address 61

QNX 206
customization 135
debugging 135

QNX Software Systems Ltd 206

Quit command 194

Radix

default 37

setting 37
Raw Memory menu item 55
Read menu item 101
RECord command 194
recording debug session 65
Recursive functions

tracing over 37
Redo menu item 64
Register command 194
Register Pop-up menu

Extended 98

Hex 98

Inspect 98

Modify 98

registers 41
control word 202
cw 202
displaying 32-bit 98
displaying in decimal 98
displaying memory 98
examining 97
flags 202
floating point 202
modifying 97
st0 - st7 202
status word 203
sw 203
Registers menu item 41
REMark (or *) command 195
remote debugging 105
Novell SPX 110
Once argument 110
over paralel port 111
over serial port 112
parallel port wiring 210
serial port wiring 209
with Internet Protocol 117
with Named Pipes 115
with 0S/2 116
with TCP/IP 117
with Windows 114
with Windows NT 116
remote file specifier prefix
@R 119
remote trap files 105
REMotefiles option 18
Repeat menu item 78
Replay 4
window 65
Replay menu item 40
Replay Pop-up menu
Assembly 66
Goto 66
Source 66
replaying debug session 65
Restart 35
Restart menu item 62
restarting program 62

223

Index

Restore menu item 63, 838 search
restoring debug session 65 entering strings 50
resuming execution 61 ignoring case 37
return to caller 62 Search menu
reverse execution 4 All Modules 49
over call 65 Find 49
over simple statement 63 Match 49
Rewind Stack menu item 64 Next 49
Right menuitem 79 Previous 49
RSI.TRP 130 Search menu item 43
run 61 search order
to cursor position 61 ONX 138
until function entered 52 searching 49
until loop completes 61 ignoring case 50
until return 62 incrementally 49
Run menu 61 Segment Follow menu item 78
Debug Startup 62 selecting text 29
Executeto 61 seria port remote debugging 112
Go 61 serial port wiring 209
Next Sequential 61 service name
Restart 62 teplink 117
Restore 63 Set command 195
Run to Cursor 61 Set LAnguage 141
Save 63 settings 11, 35
Skip to Cursor 62 automatic saving of 36
Step Over 61 saving 36
Trace Into 61 short 157-158
Until Return 62 shortcuts 32, 45
Run to Cursor menu item 52, 61 for menu items 30
RUN386.EXE 130 for pop-up menu 29

Show All menu item 54

SHow command 195

Show menu item 6

S SHow Set LAnguage 141, 148-149
Show/Address menu item 52, 99
Show/Assembly menu item 52
Show/Functions menu item 52, 99

Save menu item 63, 88 Show/Line menu item 52

Save Setup menu item 35 Show/Module menu item 52

saving debug session 63 Show/Module... menu item 99

screen Show/Pointer Code menu item 74
number of columns 17 Show/Pointer Memory menu item 73

number of lines 16, 19

Show/Raw Memory menu item 73
scroll bars 28

Show/Source menu item 99

224

Index

Show/Type menu item 74
signed 157
Signed menu item 102
SKip command 196
Skip to Cursor menu item 62
skipping code 62
socket port number 117
default 117
Source
locating files 35
window 51
source code
displaying line number 52
examining amodule 52
examining at address 52
going to line number 52
locating 11
Source menu item 5, 40, 54, 56, 66, 90
Source Path menu item 35
Source Pop-up menu
Break 52
Enter Function 52
Find 52
Home 52
Inspect 52
Run to Cursor 52
Show/Address 52
Show/Assembly 52
Show/Functions 52
Show/Line 52
Show/Module 52
Watch 52
SP 41
stack
display 77
window 77
Stack menuitem 41
stack unwinding 4
STackpos <intexpr> command 196
Status
window 43
Step Over menu item 61
stepping
into calls 61

over calls 61
string

display pointer 76

display pointer as 76
strings

entering search 50

finding 49

matching incrementally 49
support files

dbg 138

hip 138

prs 138

search order 138

sym 138

trp 138
Swap option 20
Switch to menu item 68
symbol completion 61, 91
symbols 61, 91

predefined 201
syntax

for commands 175
SYSTEM 21
SYstem (or) command 196
System menu item 35

TCP/IP
remote debugging 117
TCP/IP services 117
TCP/IP socket 117
teplink service name 117
TCPSERV 117
TD Keysmenu item 46
Tenberry Software, Inc 130, 206
DOSAG.EXE 130
DOSAGW.EXE 130
text
selecting 29

225

Index

Thaw menu item 68
Options/Expand
menu 76
item' 76
Thread
window 67
THread (or ~) command 197
Thread Pop-up menu
Freeze 68
Switchto 68
Thaw 68
threads
displaying 67
freezing 68
state 67
switching to 68
thawing 68
Threads menu item 40
TNT.EXE 130
To File menu item 42
To Log menu item 42
Toggle menu item 87
Toolbar
window 31
Trace command 197
Trace Into menu item 61
Trace Over
recursive functions 37
tracepoint
defined 85
tracing
into calls 61
over calls 61
trap file 16, 136
ADSTRP 131
PLS.TRP 130
pmd.trp 136
remote 105
RSI.TRP 130
TRap option 16, 137
Travelling Software 210
TRP extension 16
Turbo keyboard emulation 32
Two option 20

226

type

show item

show item’stype 74
Type menu item 6, 101
Type/0:16 Pointer menu item 80
Type/0:32 Pointer menu item 80
Type/16:16 Pointer menu item 80
Type/16:32 Pointer menu item 80
Typel__int64 menuitem 79
Type/Array... menu item 73, 76
Type/Byte menu item 79
Type/Char menu item 79
Type/Character menu item 75
Type/Decimal menu item 75
Type/Double menu item 80
Type/Dword menu item 79
Type/Extended Float menu item 80
Type/Float menu item 80
Type/Hex menu item 75
Type/Long menuitem 79
Type/Pointer menu item 76
Type/Qword menu item 79
Type/Short menu item 79
Type/String menu item 76
Type/lUnsigned __int64 menu item 80
Type/Unsigned Char menu item 80
Type/Unsigned Long menu item 80
Type/Unsigned Short menu item 80
Type/Word menu item 79
typecast 72, 74
Typed Symbols menu item 55, 57

Undo command 198
Undo menu 63
Home 64
Redo 64
Rewind Stack 64
Undo 64

Index

Unwind Stack 64 Show/Pointer Memory 73
Undo menu item 64 Show/Raw Memory 73
undoing changes 63 Show/Type 74
unsigned 157 Optiong/Expand
until 185 TypelArray 76
Until Return menu item 62 Type/Character 75
Unwind menu item 67 Type/Decima 75
Unwind Stack menu item 64 Type/Hex 75
unwinding call stack 64 Type/Pointer 76
user interface 3 Type/String 76

Watch 73
Variables
break on write 52
Vv displaying 55
global 41
inspecting 52

. local 41, 72
variable Satic 41

break on write 73 stopping on write 85

display type 74 watching 41

file scope 72 Variables options 39

inspect 73 VGA lines 19

modify 73 Vga50 option 19

show raw storage 73 View All menu item 88

typecast 72, 74 View command 198

watch 73 View menuitem 35

window 72
Variable Pop-up menu

Break 73

Class/Show Functions 75 W

Class/Show Generated 75
Class/Show Inherited 75
Class/Show Private 75

Class/Show Protected 75 Watch menu item 5, 52, 55, 72-73
Class/Show Static 75 Watches

Delete 74 window 72

Edit 74 Watches menu item 41
FieldOnTop 74 watchpoint 85

Inspect 73 defined 85

Modify 73 Watcom Debugger

New 74 overview 3

Optiong/Expand 'this' 76 WD environment variable 23
Options/Whole Expression 76 WD Keys menu item 46
Show/Pointer Code 74 WD_PATH environment variable 138

227

Index

WD_PATH, environment variable 135
While command 198
window
Accelerator 45
Assembly 98
Break 89
Cdlls 66
closing 27
CPU Register 97
current 28
File 53
File Variables 72
FPU 101
Functions 56
Globals 55
1/0 100
Images 57
Locals 72
Log 44
maximizing 27
Memory 77
minimizing 27
MMX 102
Modules 53
moving 28
options 38
Replay 65
resizing 29
restoring 27
Source 51
Stack 77
Status 43
System Menu 27
Thread 67
Toolbar 31
Variable 72
Watches 72
zooming 29
WIindow command 198
Window menu 42
Accelerator 42
Application 42
Next 42
ToFile 42

228

ToLog 42
Zoom 42
Window Options menu item 35
Windows
enhanced mode 114
Microsoft 133
remote debugging 114
Windows 3.x 206
Microsoft 133
Windows 95 206
Windows NT 206
remote debugging 116
wiring
null modem 209
paralel port 210
serial port 209
Word menu item 102
Write menu item 101

XConfig option 22

Zoom menu item 42

